Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

被引:36
作者
Sharma, Kunal [1 ,2 ,3 ]
Cerezo, M. [1 ,4 ]
Holmes, Zoe [5 ]
Cincio, Lukasz [1 ]
Sornborger, Andrew [5 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
关键词
All Open Access; Green;
D O I
10.1103/PhysRevLett.128.070501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The no-free-lunch (NFL) theorem is a celebrated result in learning theory that limits one's ability to learn a function with a training dataset. With the recent rise of quantum machine learning, it is natural to ask whether there is a quantum analog of the NFL theorem, which would restrict a quantum computer's ability to learn a unitary process with quantum training data. However, in the quantum setting, the training data can possess entanglement, a strong correlation with no classical analog. In this Letter, we show that entangled datasets lead to an apparent violation of the (classical) NFL theorem. This motivates a reformulation that accounts for the degree of entanglement in the training set. As our main result, we prove a quantum NFL theorem whereby the fundamental limit on the learnability of a unitary is reduced by entanglement. We employ Rigetti's quantum computer to test both the classical and quantum NFL theorems. Our Letter establishes that entanglement is a commodity in quantum machine learning.
引用
收藏
页数:7
相关论文
共 51 条
[11]   Optimal quantum learning of a unitary transformation [J].
Bisio, Alessandro ;
Chiribella, Giulio ;
D'Ariano, Giacomo Mauro ;
Facchini, Stefano ;
Perinotti, Paolo .
PHYSICAL REVIEW A, 2010, 81 (03)
[12]  
Bravo-Prieto Carlos, ARXIV190905820
[13]   Cost function dependent barren plateaus in shallow parametrized quantum circuits [J].
Cerezo, M. ;
Sone, Akira ;
Volkoff, Tyler ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[14]   Variational Quantum Fidelity Estimation [J].
Cerezo, M. ;
Poremba, Alexander ;
Cincio, Lukasz ;
Coles, Patrick J. .
QUANTUM, 2020, 4
[15]   Quantum machine learning: a classical perspective [J].
Ciliberto, Carlo ;
Herbster, Mark ;
Ialongo, Alessandro Davide ;
Pontil, Massimiliano ;
Rocchetto, Andrea ;
Severini, Simone ;
Wossnig, Leonard .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209)
[16]   Variational fast forwarding for quantum simulation beyond the coherence time [J].
Cirstoiu, Cristina ;
Holmes, Zoe ;
Iosue, Joseph ;
Cincio, Lukasz ;
Coles, Patrick J. ;
Sornborger, Andrew .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[17]   Entropic uncertainty relations and their applications [J].
Coles, Patrick J. ;
Berta, Mario ;
Tomamichel, Marco ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[18]   Integration with respect to the Haar measure on unitary, orthogonal and symplectic group [J].
Collins, B ;
Sniady, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) :773-795
[19]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[20]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)