Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

被引:36
作者
Sharma, Kunal [1 ,2 ,3 ]
Cerezo, M. [1 ,4 ]
Holmes, Zoe [5 ]
Cincio, Lukasz [1 ]
Sornborger, Andrew [5 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
关键词
All Open Access; Green;
D O I
10.1103/PhysRevLett.128.070501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The no-free-lunch (NFL) theorem is a celebrated result in learning theory that limits one's ability to learn a function with a training dataset. With the recent rise of quantum machine learning, it is natural to ask whether there is a quantum analog of the NFL theorem, which would restrict a quantum computer's ability to learn a unitary process with quantum training data. However, in the quantum setting, the training data can possess entanglement, a strong correlation with no classical analog. In this Letter, we show that entangled datasets lead to an apparent violation of the (classical) NFL theorem. This motivates a reformulation that accounts for the degree of entanglement in the training set. As our main result, we prove a quantum NFL theorem whereby the fundamental limit on the learnability of a unitary is reduced by entanglement. We employ Rigetti's quantum computer to test both the classical and quantum NFL theorems. Our Letter establishes that entanglement is a commodity in quantum machine learning.
引用
收藏
页数:7
相关论文
共 51 条
[1]   No Free Lunch Theorem: A Review [J].
Adam, Stavros P. ;
Alexandropoulos, Stamatios-Aggelos N. ;
Pardalos, Panos M. ;
Vrahatis, Michael N. .
APPROXIMATION AND OPTIMIZATION: ALGORITHMS, COMPLEXITY AND APPLICATIONS, 2019, 145 :57-82
[2]  
[Anonymous], ARXIV180206002
[3]  
[Anonymous], 2018, Mathematical foundations of supervised learning
[4]   Variational consistent histories as a hybrid algorithm for quantum foundations [J].
Arrasmith, Andrew ;
Cincio, Lukasz ;
Sornborger, Andrew T. ;
Zurek, Wojciech H. ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[6]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[8]   Entanglement-assisted guessing of complementary measurement outcomes [J].
Berta, Mario ;
Coles, Patrick J. ;
Wehner, Stephanie .
PHYSICAL REVIEW A, 2014, 90 (06)
[9]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[10]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202