ARITHMETIC SCHEMA CLASS BODIES

被引:0
|
作者
Szamuely, Tamas [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
CLASS FIELD-THEORY; BLOCH-KATO CONJECTURE; SINGULAR HOMOLOGY; CHOW GROUP; K-THEORY; VARIETIES; COVERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:257 / 286
页数:30
相关论文
共 50 条
  • [21] AFTERWORD TO THE ARTICLE "ARITHMETIC ON CURVES"
    Mazur, B.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 353 - 358
  • [22] The Hilbert property for arithmetic schemes
    Luger, Cedric
    ACTA ARITHMETICA, 2022, : 115 - 126
  • [23] Arithmetic twists and Abelian extensions
    Murty, V. Kumar
    NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 : 167 - 191
  • [24] Singular homology of arithmetic schemes
    Schmidt, Alexander
    ALGEBRA & NUMBER THEORY, 2007, 1 (02) : 183 - 222
  • [25] Arithmetic Varieties of Numerical Semigroups
    Branco, Manuel B.
    Ojeda, Ignacio
    Rosales, Jose Carlos
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [26] WEIL-ETALE COHOMOLOGY AND ZETA-VALUES OF PROPER REGULAR ARITHMETIC SCHEMES
    Flach, Matthias
    Morin, Baptiste
    DOCUMENTA MATHEMATICA, 2018, 23 : 1425 - 1560
  • [27] Some fundamental groups in arithmetic geometry
    Esnault, Helene
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 169 - 179
  • [28] ARITHMETIC DIFFERENTIAL EQUATIONS IN SEVERAL VARIABLES
    Buium, Alexandru
    Simanca, Santiago R.
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) : 2685 - 2708
  • [29] Arithmetic partial differential equations, I
    Buium, Alexandru
    Simanca, Santiago R.
    ADVANCES IN MATHEMATICS, 2010, 225 (02) : 689 - 793
  • [30] Arithmetic gauge theory: A brief introduction
    Kim, Minhyong
    MODERN PHYSICS LETTERS A, 2018, 33 (29)