Multitask Representation Learning With Multiview Graph Convolutional Networks

被引:24
|
作者
Huang, Hong [1 ,2 ,3 ,4 ]
Song, Yu [1 ,2 ,3 ,4 ]
Wu, Yao [1 ,2 ,3 ,4 ]
Shi, Jia [1 ,2 ,3 ,4 ]
Xie, Xia [1 ,2 ,3 ,4 ]
Jin, Hai [1 ,2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Serv Comp Technol & Syst Lab, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Cluster & Grid Comp Lab, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Data mining; Data models; Correlation; Predictive models; Collaboration; Training data; graph neural networks (GNNs); multitask learning; representation learning;
D O I
10.1109/TNNLS.2020.3036825
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Link prediction and node classification are two important downstream tasks of network representation learning. Existing methods have achieved acceptable results but they perform these two tasks separately, which requires a lot of duplication of work and ignores the correlations between tasks. Besides, conventional models suffer from the identical treatment of information of multiple views, thus they fail to learn robust representation for downstream tasks. To this end, we tackle link prediction and node classification problems simultaneously via multitask multiview learning in this article. We first explain the feasibility and advantages of multitask multiview learning for these two tasks. Then we propose a novel model named MT-MVGCN to perform link prediction and node classification tasks simultaneously. More specifically, we design a multiview graph convolutional network to extract abundant information of multiple views in a network, which is shared by different tasks. We further apply two attention mechanisms: view the attention mechanism and task attention mechanism to make views and tasks adjust the view fusion process. Moreover, view reconstruction can be introduced as an auxiliary task to boost the performance of the proposed model. Experiments on real-world network data sets demonstrate that our model is efficient yet effective, and outperforms advanced baselines in these two tasks.
引用
收藏
页码:983 / 995
页数:13
相关论文
共 50 条
  • [1] WMGCN: Weighted Meta-Graph Based Graph Convolutional Networks for Representation Learning in Heterogeneous Networks
    Zhang, Jinli
    Jiang, Zongli
    Chen, Zheng
    Hu, Xiaohua
    IEEE ACCESS, 2020, 8 (08): : 40744 - 40754
  • [2] Variational Graph Convolutional Networks for Dynamic Graph Representation Learning
    Mir, Aabid A.
    Zuhairi, Megat F.
    Musa, Shahrulniza
    Alanazi, Meshari H.
    Namoun, Abdallah
    IEEE ACCESS, 2024, 12 : 161697 - 161717
  • [3] Learning Disentangled Graph Convolutional Networks Locally and Globally
    Guo, Jingwei
    Huang, Kaizhu
    Yi, Xinping
    Zhang, Rui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3640 - 3651
  • [4] Incomplete Multiview Nonnegative Representation Learning With Graph Completion and Adaptive Neighbors
    Sun, Shiliang
    Zhang, Nan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4017 - 4031
  • [5] Efficient Multiview Representation Learning With Correntropy and Anchor Graph
    Zhang, Nan
    Zhang, Xiaoqin
    Sun, Shiliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4632 - 4645
  • [6] A Novel Representation Learning for Dynamic Graphs Based on Graph Convolutional Networks
    Gao, Chao
    Zhu, Junyou
    Zhang, Fan
    Wang, Zhen
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (06) : 3599 - 3612
  • [7] Integrating Graph Signal Processing and Multitask Temporal Convolutional Networks for Household Nonintrusive Load Monitoring
    Su, Yongxin
    Peng, Haotian
    Tan, Mao
    Chen, Jie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [8] Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework
    Wang, Jingcheng
    Zhang, Yong
    Wang, Lixun
    Hu, Yongli
    Piao, Xinglin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18557 - 18567
  • [9] Multitask, Multilabel, and Multidomain Learning With Convolutional Networks for Emotion Recognition
    Pons, Gerard
    Masip, David
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4764 - 4771
  • [10] Network Representation Learning Framework Based on Adversarial Graph Convolutional Networks
    Chen M.
    Liu Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (11): : 1042 - 1050