Some sufficient conditions on hamilton graphs with toughness
被引:1
|
作者:
Cai, Gaixiang
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Cai, Gaixiang
[1
]
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Yu, Tao
[1
]
Xu, Huan
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Xu, Huan
[2
]
Yu, Guidong
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Yu, Guidong
[1
,2
]
机构:
[1] Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
[2] Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R China
Let G be a graph, and the number of components of G is denoted by c(G). Let t be a positive real number. A connected graph G is t-tough if tc(G - S) <= |S| for every vertex cut S of V(G). The toughness of G is the largest value of t for which G is t-tough, denoted by tau(G). We call a graph G Hamiltonian if it has a cycle that contains all vertices of G. Chvatal and other scholars investigate the relationship between toughness conditions and the existence of cyclic structures. In this paper, we establish some sufficient conditions that a graph with toughness is Hamiltonian based on the number of edges, spectral radius, and signless Laplacian spectral radius of the graph.MR subject classifications: 05C50, 15A18.
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Ma, Zhiqiang
Ren, Fengyun
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Ren, Fengyun
Wei, Meiqin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Sch Sci, Shanghai 201306, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Wei, Meiqin
Bao, Gemaji
论文数: 0引用数: 0
h-index: 0
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R China
Chen, Yuanyuan
Fan, Dandan
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
Xinjiang Agr Univ, Coll Math & Phys, Urumqi 830052, Xinjiang, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R China
Fan, Dandan
Lin, Huiqiu
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R China
机构:
East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
Xinjiang Agr Univ, Coll Math & Phys, Urumqi 830052, Xinjiang, Peoples R ChinaEast China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
Fan, Dandan
Lin, Huiqiu
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
Lin, Huiqiu
Lu, Hongliang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaEast China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
Chen, Xiaodan
Hou, Yaoping
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
Hou, Yaoping
Qian, Jianguo
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China