Some sufficient conditions on hamilton graphs with toughness
被引:1
|
作者:
Cai, Gaixiang
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Cai, Gaixiang
[1
]
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Yu, Tao
[1
]
Xu, Huan
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Xu, Huan
[2
]
Yu, Guidong
论文数: 0引用数: 0
h-index: 0
机构:
Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R ChinaAnqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
Yu, Guidong
[1
,2
]
机构:
[1] Anqing Normal Univ, Sch Math & Phys, Anqing, Peoples R China
[2] Hefei Presch Educ Coll, Dept Publ Educ, Hefei, Peoples R China
Let G be a graph, and the number of components of G is denoted by c(G). Let t be a positive real number. A connected graph G is t-tough if tc(G - S) <= |S| for every vertex cut S of V(G). The toughness of G is the largest value of t for which G is t-tough, denoted by tau(G). We call a graph G Hamiltonian if it has a cycle that contains all vertices of G. Chvatal and other scholars investigate the relationship between toughness conditions and the existence of cyclic structures. In this paper, we establish some sufficient conditions that a graph with toughness is Hamiltonian based on the number of edges, spectral radius, and signless Laplacian spectral radius of the graph.MR subject classifications: 05C50, 15A18.
机构:
Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
Zhou, Sizhong
Sun, Zhiren
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
Sun, Zhiren
Liu, Hongxia
论文数: 0引用数: 0
h-index: 0
机构:
Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Ao, Guoyan
Liu, Ruifang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Liu, Ruifang
Yuan, Jinjiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Yuan, Jinjiang
Ng, C. T.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Logist Res Ctr, Dept Logist & Maritime Studies, Hong Kong, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Ng, C. T.
Cheng, T. C. E.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Logist Res Ctr, Dept Logist & Maritime Studies, Hong Kong, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China