Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices

被引:31
|
作者
Senyange, B. [1 ]
Manda, B. Many [1 ]
Skokos, Ch [1 ,2 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Cape Town, South Africa
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
新加坡国家研究基金会;
关键词
ANDERSON LOCALIZATION; INTEGRATION; SIGNATURES; DIFFUSION; TRANSPORT; ABSENCE; WAVES;
D O I
10.1103/PhysRevE.98.052229
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We numerically investigate the characteristics of chaos evolution during wave-packet spreading in two typical one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schrodinger equation model. Completing previous investigations [Ch. Skokos et al., Phys. Rev. Lett. 111, 064101 ( 2013)], we verify that chaotic dynamics is slowing down for both the so-called weak and strong chaos dynamical regimes encountered in these systems, without showing any signs of a crossover to regular dynamics. The value of the finite-time maximum Lyapunov exponent Lambda decays in time t as Lambda proportional to t(alpha Lambda) with alpha(Lambda) being different from the alpha(Lambda) = -1 value observed in cases of regular motion. In particular, alpha(Lambda) approximate to -0.25 (weak chaos) and alpha(Lambda) approximate to -0.3 (strong chaos) for both models, indicating the dynamical differences of the two regimes and the generality of the underlying chaotic mechanisms. The spatiotemporal evolution of the deviation vector associated with Lambda reveals the meandering of chaotic seeds inside the wave packet, which is needed for obtaining the chaotization of the lattice's excited part.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Linear and nonlinear localized modes in the width-disordered one-dimensional waveguide arrays
    Xu, Lei
    Yin, Yi
    Bo, Fang
    Xu, Jingjun
    Zhang, Guoquan
    QUANTUM AND NONLINEAR OPTICS II, 2012, 8554
  • [22] Subdiffusion of nonlinear waves in two-dimensional disordered lattices
    Laptyeva, T. V.
    Bodyfelt, J. D.
    Flach, S.
    EPL, 2012, 98 (06)
  • [23] Dynamical observation of mobility edges in one-dimensional incommensurate optical lattices
    Xu, Zhihao
    Huangfu, Hongli
    Zhang, Yunbo
    Chen, Shu
    NEW JOURNAL OF PHYSICS, 2020, 22 (01):
  • [24] Nonequilibrium Chaos of Disordered Nonlinear Waves
    Skokos, Ch.
    Gkolias, I.
    Flach, S.
    PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [25] Ground-state phases of interacting Fermi gases in disordered one-dimensional lattices
    Gao Xianlong
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (22)
  • [26] Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices
    Gori, Lorenzo
    Barthel, Thomas
    Kumar, Avinash
    Lucioni, Eleonora
    Tanzi, Luca
    Inguscio, Massimo
    Modugno, Giovanni
    Giamarchi, Thierry
    D'Errico, Chiara
    Roux, Guillaume
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [27] Kohn's localization in the insulating state: One-dimensional lattices, crystalline versus disordered
    Bendazzoli, Gian Luigi
    Evangelisti, Stefano
    Monari, Antonio
    Resta, Raffaele
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (06)
  • [28] Localization properties of the asymptotic density distribution of a one-dimensional disordered system
    Hainaut, Clement
    Clement, Jean-Francois
    Szriftgiser, Pascal
    Garreau, Jean Claude
    Rancon, Adam
    Chicireanu, Radu
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (06)
  • [29] Phason dynamics in one-dimensional lattices
    Lipp, Hansjoerg
    Engel, Michael
    Sonntag, Steffen
    Trebin, Hans-Rainer
    PHYSICAL REVIEW B, 2010, 81 (06)
  • [30] Purcell effect in disordered one-dimensional photonic crystals
    Gubaydullin, A. R.
    Ivanov, K. A.
    Nikolaev, V. V.
    Kaliteevski, M. A.
    SEMICONDUCTORS, 2017, 51 (07) : 947 - 952