Retrieval of Forest Structural Parameters from Terrestrial Laser Scanning: A Romanian Case Study

被引:7
|
作者
Pascu, Ionut-Silviu [1 ,2 ]
Dobre, Alexandru-Claudiu [1 ,2 ]
Badea, Ovidiu [1 ,2 ]
Tanase, Mihai Andrei [3 ]
机构
[1] Marin Dracea Romanian Natl Inst Res & Dev Forestr, Dept Forest Monitoring, 128 Eroilor Blvd, Voluntari 077190, Ilfov, Romania
[2] Transilvania Univ, Fac Silviculture & Forest Engn, Dept Forest Engn Forest Management Planning & Ter, 1 Ludwig Beethoven Str, Brasov 500123, Romania
[3] Univ Alcala, Dept Geol Geog & Environm, 2 C Colegios, Alcala De Henares 28801, Spain
来源
FORESTS | 2020年 / 11卷 / 04期
关键词
TLS; single scan; multiple scans; biophysical parameters; TREE HEIGHT; ATTRIBUTES; TLS;
D O I
10.3390/f11040392
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Research Highlights: The present study case investigates the differences occurring when tree's biophysical parameters are extracted through single and multiple scans. Scan sessions covered mountainous and hill regions of the Carpathian forests. Background and Objectives: We focused on analyzing stems, as a function of diameter at breast height (DBH) and the total height (H), at sample plot level for natural forests, with the purpose of assessing the potential for transitioning available methodology to field work in Romania. Materials and Methods: We performed single and multiple scans using a FARO Focus 3D X130 phase shift terrestrial laser scanner at 122 kpts and 0.3:0.15 mm noise compression ratio, resulting in an average point density of 6pts at 10m. The point cloud we obtained underpinned the DBH and heights analysis. In order to reach values similar to those measured in the field, we used both the original and the segmented point clouds, postprocessed in subsamples of different radii. Results: Pearson's correlation coefficient above 0.8 for diameters showed high correlation with the field measurements. Diameter averages displayed differences within tolerances (0.02 m) for 10 out of 12 plots. Height analysis led to poorer results. For both acquisition methods, the values of the correlation coefficient peaked at 0.6. The initial hypothesis that trees positioned at a distance equivalent to their height can be measured more precise, was not valid; no increase in correlation strength was visible for either heights or diameters as the distance from scanner varied (r = 0.52). Conclusions: With regard to tree biophysical parameters extraction, the acquisition method has no major influence upon visible trees. We emphasize the term "visible", as an increase in the number of acquisitions led to an increased number of detected trees (16% in old stands and 29% in young stands).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] UAV-LiDAR and Terrestrial Laser Scanning for Automatic Extraction of Forest Inventory Parameters
    Meghraoui, Khadija
    Lfalah, Hamza
    Sebari, Imane
    Kellouch, Souhail
    Fadil, Sanaa
    El Kadi, Kenza Ait
    Bensiali, Saloua
    PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY, 2023, 304 : 375 - 393
  • [2] Extraction of forest inventory parameters using handheld mobile laser scanning: A case study from Trabzon, Turkey
    Vatandaslar, Can
    Zeybek, Mustafa
    MEASUREMENT, 2021, 177
  • [3] Using Terrestrial Laser Scanning to Measure Forest Inventory Parameters in a Mediterranean Coniferous Stand of Western Greece
    Ghimire, Suman
    Xystrakis, Fotios
    Koutsias, Nikos
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (04): : 213 - 225
  • [4] Using Terrestrial Laser Scanning to Measure Forest Inventory Parameters in a Mediterranean Coniferous Stand of Western Greece
    Suman Ghimire
    Fotios Xystrakis
    Nikos Koutsias
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 213 - 225
  • [5] Bibliometric Insights into Terrestrial Laser Scanning for Forest Biomass Estimation
    Compean-Aguirre, Jorge Luis
    Lopez-Serrano, Pablito Marcelo
    ECOLOGIES, 2024, 5 (03): : 470 - 490
  • [6] Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure
    Moorthy, Sruthi M. Krishna
    Calders, Kim
    di Porcia e Brugnera, Manfredo
    Schnitzer, Stefan A.
    Verbeeck, Hans
    REMOTE SENSING, 2018, 10 (06)
  • [7] International benchmarking of terrestrial laser scanning approaches for forest inventories
    Liang, Xinlian
    Hyyppa, Juha
    Kaartinen, Harri
    Lehtomaki, Matti
    Pyorala, Jiri
    Pfeifer, Norbert
    Holopainen, Markus
    Brolly, Gabor
    Pirotti, Francesco
    Hackenberg, Jan
    Huang, Huabing
    Jo, Hyun-Woo
    Katoh, Masato
    Liu, Luxia
    Mokros, Martin
    Morel, Jules
    Olofsson, Kenneth
    Poveda-Lopez, Jose
    Trochta, Jan
    Wang, Di
    Wang, Jinhu
    Xi, Zhouxi
    Yang, Bisheng
    Zheng, Guang
    Kankare, Ville
    Luoma, Ville
    Yu, Xiaowei
    Chen, Liang
    Vastaranta, Mikko
    Saarinen, Ninni
    Wang, Yunsheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 137 - 179
  • [8] Optimal bucking of stems from terrestrial laser scanning data to maximize forest value
    Prendes, Covadonga
    Acuna, Mauricio
    Canga, Elena
    Ordonez, Celestino
    Cabo, Carlos
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2023, 38 (03) : 174 - 188
  • [9] Quantifying Forest Litter Fuel Moisture Content with Terrestrial Laser Scanning
    Batchelor, Jonathan L.
    Rowell, Eric
    Prichard, Susan
    Nemens, Deborah
    Cronan, James
    Kennedy, Maureen C.
    Moskal, L. Monika
    REMOTE SENSING, 2023, 15 (06)
  • [10] Reliable Estimates of Merchantable Timber Volume from Terrestrial Laser Scanning
    Panagiotidis, Dimitrios
    Abdollahnejad, Azadeh
    REMOTE SENSING, 2021, 13 (18)