The Surface Energy Budget and Its Impact on the Freeze-thaw Processes of Active Layer in Permafrost Regions of the Qinghai-Tibetan Plateau

被引:16
|
作者
Ma, Junjie [1 ,2 ]
Li, Ren [1 ]
Liu, Hongchao [3 ]
Huang, Zhongwei [3 ]
Wu, Tonghua [1 ]
Hu, Guojie [1 ]
Xiao, Yao [1 ]
Zhao, Lin [4 ]
Du, Yizhen [1 ,2 ]
Yang, Shuhua [1 ,2 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Qinghai-Tibetan Plateau; permafrost; energy budget; freeze-thaw process; thawing depth; SOIL HYDROTHERMAL REGIME; CLIMATE-CHANGE; SOLAR-RADIATION; WATER STORAGE; LAND; EVAPOTRANSPIRATION; BALANCE; ALBEDO; CARBON; SIMULATIONS;
D O I
10.1007/s00376-021-1066-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions. In this study, in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes, the interaction between surface energy budget and freeze-thaw processes. The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations. Annual average net radiation (R-n) for 2010 was 86.5 W m(-2), with the largest being in July and smallest in November. Surface soil heat flux (G(0)) was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m(-2). Variations in R-n and G(0) were closely related to freeze-thaw processes. Sensible heat flux (H) was the main energy budget component during cold seasons, whereas latent heat flux (LE) dominated surface energy distribution in warm seasons. Freeze-thaw processes, snow cover, precipitation, and surface conditions were important influence factors for surface energy flux. Albedo was strongly dependent on soil moisture content and ground surface state, increasing significantly when land surface was covered with deep snow, and exhibited negative correlation with surface soil moisture content. Energy variation was significantly related to active layer thaw depth. Soil heat balance coefficient K was > 1 during the investigation time period, indicating the permafrost in the Tanggula area tended to degrade.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [31] Hillslopes in Headwaters of Qinghai-Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing During Permafrost Thaw
    Sun, Yuqin
    Clauson, Kale
    Zhou, Min
    Sun, Ziyong
    Zheng, Chunmiao
    Zheng, Yan
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2021, 126 (05)
  • [32] Mechanisms and influencing factors of hydrothermal processes in active layer soils on the Qinghai-Tibet Plateau under freeze-thaw action
    Wang, Yibo
    Liu, Xin
    Lv, Mingxia
    Zhang, Zhongyang
    CATENA, 2023, 220
  • [33] Responses of Soil Freeze-Thaw Processes to Climate on the Tibetan Plateau from 1980 to 2016
    Fu, Chunwei
    Hu, Zeyong
    Yang, Yaoxian
    Deng, Mingshan
    Yu, Haipeng
    Lu, Shan
    Wu, Di
    Fan, Weiwei
    REMOTE SENSING, 2022, 14 (23)
  • [34] Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China
    Zhou, Jian
    Kinzelbach, Wolfgang
    Cheng, Guodong
    Zhang, Wei
    He, Xiaobo
    Ye, Bosheng
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2013, 90-91 : 38 - 52
  • [35] Different response of vegetation to permafrost change in semi-arid and semi-humid regions in Qinghai-Tibetan Plateau
    Wang Zengru
    Yang Guojing
    Yi Shuhua
    Wu Zhen
    Guan Jianyue
    He Xiaobo
    Ye Baisheng
    ENVIRONMENTAL EARTH SCIENCES, 2012, 66 (03) : 985 - 991
  • [36] Soil property changes following a thaw-induced mass movement event in the permafrost region of the Qinghai-Tibetan Plateau
    Yang, Jiahui
    Zhang, Ruhan
    Li, Xiaobin
    Wang, Xiangwei
    Dyck, Miles
    Wang, Luyang
    Wu, Qingbai
    He, Hailong
    CATENA, 2025, 252
  • [37] Spatiotemporal variability of dissolved carbon and sources of dissolved inorganic carbon influenced by freeze-thaw and subsurface flow in an alpine headwater catchment of the Qinghai-Tibetan Plateau
    Zhang, Yangyang
    Li, Xiao-yan
    Shi, Fangzhong
    Zhang, Xia
    Hu, Guangrong
    Zuo, Fenglin
    Wang, Zhigang
    Liu, Xin
    JOURNAL OF HYDROLOGY, 2024, 640
  • [38] Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau
    Li Jie
    Jiang Sha
    Wang Bin
    Jiang Wei-wei
    Tang Yan-hong
    Du Ming-yuan
    Gu Song
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2013, 12 (08) : 1396 - 1401
  • [39] Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau
    LI Jie
    JIANG Sha
    WANG Bin
    JIANG Wei-wei
    TANG Yan-hong
    DU Ming-yuan
    GU Song
    Journal of Integrative Agriculture, 2013, 12 (08) : 1396 - 1401
  • [40] Comparison of hydrogeochemical characteristics of thermokarst lake water in the Qinghai-Tibet Plateau under active layer freeze-thaw conditions
    Fang, Yahong
    Liu, Zejun
    Lyu, Qiaofen
    Hu, Haiyang
    Wang, Wei
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (03) : 1548 - 1562