A partial differential equation approach to multidimensional extrapolation

被引:194
作者
Aslam, TD [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
extrapolation; level set; partial differential equation;
D O I
10.1016/j.jcp.2003.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this short note, a general methodology for multidimensional extrapolation is presented. The approach assumes a level set function exists which separates the region of known values from the region to be extrapolated. It is shown that arbitrary orders of polynomial extrapolation can be formulated by simply solving a series of linear partial differential equations (PDEs). Examples of constant, linear and quadratic extrapolation are given. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 10 条
[1]  
Aslam T.D., 1996, THESIS U ILLINOIS UR
[2]  
Fedkiw RP, 1999, J COMPUT PHYS, V152, P457, DOI 10.1006/jcph.1999.6136
[3]   The ghost fluid method for deflagration and detonation discontinuities [J].
Fedkiw, RP ;
Aslam, T ;
Xu, SJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :393-427
[4]  
GIBOU F, 2003, UNPUB J COMPUT PHYS
[5]  
Osher S., 2002, LEVEL SET METHODS DY
[6]  
Sethian J.A., 1996, Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
[7]  
SETHIAN JA, 1999, FAST MARCHING METHOD
[8]   EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES [J].
SHU, CW ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (02) :439-471
[9]   A LEVEL SET APPROACH FOR COMPUTING SOLUTIONS TO INCOMPRESSIBLE 2-PHASE FLOW [J].
SUSSMAN, M ;
SMEREKA, P ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (01) :146-159
[10]   A multiphase level set framework for image segmentation using the Mumford and Shah model [J].
Vese, LA ;
Chan, TF .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 50 (03) :271-293