Efficient quantum error correction for fully correlated noise

被引:19
作者
Li, Chi-Kwong [1 ,6 ]
Nakahara, Mikio [2 ,3 ]
Poon, Yiu-Tung [4 ]
Sze, Nung-Sing [5 ]
Tomita, Hiroyuki [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Kinki Univ, Interdisciplinary Grad Sch Sci & Engn, Res Ctr Quantum Comp, Higashi Osaka 5778502, Japan
[3] Kinki Univ, Dept Phys, Higashi Osaka 5778502, Japan
[4] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[5] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum error correction; Higher rank numerical range; Recovery operator; Mixed unitary channel; RANK NUMERICAL RANGES; CODES;
D O I
10.1016/j.physleta.2011.07.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is characterized by a quantum channel whose error operators take fully correlated forms given by sigma(circle times n)(x), sigma(circle times n)(y) and sigma(circle times n)(2), where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits codeword encodes (n - 1) data qubits when n is odd and (ii) n qubits codeword implements an error-free encoding, which encode (n - 2) data qubits when n is even. Quantum circuits implementing these schemes are constructed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 12 条
[11]  
TOMITA H, ARXIV11010413
[12]   Noiseless quantum codes [J].
Zanardi, P ;
Rasetti, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (17) :3306-3309