Efficient quantum error correction for fully correlated noise

被引:19
作者
Li, Chi-Kwong [1 ,6 ]
Nakahara, Mikio [2 ,3 ]
Poon, Yiu-Tung [4 ]
Sze, Nung-Sing [5 ]
Tomita, Hiroyuki [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Kinki Univ, Interdisciplinary Grad Sch Sci & Engn, Res Ctr Quantum Comp, Higashi Osaka 5778502, Japan
[3] Kinki Univ, Dept Phys, Higashi Osaka 5778502, Japan
[4] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[5] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum error correction; Higher rank numerical range; Recovery operator; Mixed unitary channel; RANK NUMERICAL RANGES; CODES;
D O I
10.1016/j.physleta.2011.07.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is characterized by a quantum channel whose error operators take fully correlated forms given by sigma(circle times n)(x), sigma(circle times n)(y) and sigma(circle times n)(2), where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits codeword encodes (n - 1) data qubits when n is odd and (ii) n qubits codeword implements an error-free encoding, which encode (n - 2) data qubits when n is even. Quantum circuits implementing these schemes are constructed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 12 条
  • [1] BRAUNSTEIN SL, ARXIVQUANTPH9603024
  • [2] Quantum error correction with degenerate codes for correlated noise
    Chiribella, Giulio
    Dall'Arno, Michele
    D'Ariano, Giacomo Mauro
    Macchiavello, Chiara
    Perinotti, Paolo
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):
  • [3] Higher-rank numerical ranges and compression problems
    Choi, Man-Duen
    Kribs, David W.
    Zyczkowski, Karol
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 828 - 839
  • [4] Gaitan F., 2008, Quantum Error Correction and Fault Tolerant Quantum Computing
  • [5] Theory of quantum error-correcting codes
    Knill, E
    Laflamme, R
    [J]. PHYSICAL REVIEW A, 1997, 55 (02): : 900 - 911
  • [6] Theory of quantum error correction for general noise
    Knill, E
    Laflamme, R
    Viola, L
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2525 - 2528
  • [7] Perfect quantum error correcting code
    Laflamme, R
    Miquel, C
    Paz, JP
    Zurek, WH
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 198 - 201
  • [8] Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3013 - 3023
  • [9] Condition for the higher rank numerical range to be non-empty
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) : 365 - 368
  • [10] LI CK, ARXIV11021618