Efficient quantum error correction for fully correlated noise

被引:19
作者
Li, Chi-Kwong [1 ,6 ]
Nakahara, Mikio [2 ,3 ]
Poon, Yiu-Tung [4 ]
Sze, Nung-Sing [5 ]
Tomita, Hiroyuki [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Kinki Univ, Interdisciplinary Grad Sch Sci & Engn, Res Ctr Quantum Comp, Higashi Osaka 5778502, Japan
[3] Kinki Univ, Dept Phys, Higashi Osaka 5778502, Japan
[4] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[5] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum error correction; Higher rank numerical range; Recovery operator; Mixed unitary channel; RANK NUMERICAL RANGES; CODES;
D O I
10.1016/j.physleta.2011.07.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is characterized by a quantum channel whose error operators take fully correlated forms given by sigma(circle times n)(x), sigma(circle times n)(y) and sigma(circle times n)(2), where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits codeword encodes (n - 1) data qubits when n is odd and (ii) n qubits codeword implements an error-free encoding, which encode (n - 2) data qubits when n is even. Quantum circuits implementing these schemes are constructed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 12 条
[1]  
BRAUNSTEIN SL, ARXIVQUANTPH9603024
[2]   Quantum error correction with degenerate codes for correlated noise [J].
Chiribella, Giulio ;
Dall'Arno, Michele ;
D'Ariano, Giacomo Mauro ;
Macchiavello, Chiara ;
Perinotti, Paolo .
PHYSICAL REVIEW A, 2011, 83 (05)
[3]   Higher-rank numerical ranges and compression problems [J].
Choi, Man-Duen ;
Kribs, David W. ;
Zyczkowski, Karol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :828-839
[4]  
Gaitan F., 2008, Quantum Error Correction and Fault Tolerant Quantum Computing
[5]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[6]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[7]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201
[8]   Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations [J].
Li, Chi-Kwong ;
Sze, Nung-Sing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) :3013-3023
[9]   Condition for the higher rank numerical range to be non-empty [J].
Li, Chi-Kwong ;
Poon, Yiu-Tung ;
Sze, Nung-Sing .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :365-368
[10]  
LI CK, ARXIV11021618