Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data

被引:0
|
作者
Chevallier, Juliette [1 ]
Oudard, Stephan [2 ]
Allassonniere, Stephanie [3 ]
机构
[1] Ecole Polytech, CMAP, Palaiseau, France
[2] USPC, AP HP, HEGP, Oncol Dept, Paris, France
[3] Univ Paris 05, CRC, Paris, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
关键词
MAXIMUM-LIKELIHOOD; GUIDELINES; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a hierarchical model which allows to estimate a group-average piecewise-geodesic trajectory in the Riemannian space of measurements and individual variability. This model falls into the well defined mixed-effect models. The subject-specific trajectories are defined through spatial and temporal transformations of the group-average piecewise-geodesic path, component by component. Thus we can apply our model to a wide variety of situations. Due to the non-linearity of the model, we use the Stochastic Approximation Expectation-Maximization algorithm to estimate the model parameters. Experiments on synthetic data validate this choice. The model is then applied to the metastatic renal cancer chemotherapy monitoring: we run estimations on RECIST scores of treated patients and estimate the time they escape from the treatment. Experiments highlight the role of the different parameters on the response to treatment.
引用
收藏
页数:9
相关论文
共 5 条
  • [1] Learning spatiotemporal trajectories from manifold-valued longitudinal data
    Schiratti, Jean-Baptiste
    Allassonniere, Stephanie
    Colliot, Olivier
    Durrleman, Stanley
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [2] Learning the Clustering of Longitudinal Shape Data Sets into a Mixture of Independent or Branching Trajectories
    Debavelaere, Vianney
    Durrleman, Stanley
    Allassonniere, Stephanie
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (12) : 2794 - 2809
  • [3] Operator-valued Kernels for Learning from Functional Response Data
    Kadri, Hachem
    Duflos, Emmanuel
    Preux, Philippe
    Canu, Stephane
    Rakotomamonjy, Alain
    Audiffren, Julien
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [4] Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework
    Yuan, Ye
    Li, Xiuting
    Li, Liang
    Jiang, Frank J.
    Tang, Xiuchuan
    Zhang, Fumin
    Goncalves, Jorge
    Voss, Henning U.
    Ding, Han
    Kurths, Juergen
    CHAOS, 2023, 33 (11)
  • [5] Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data
    Bender, Christian
    Henjes, Frauke
    Froehlich, Holger
    Wiemann, Stefan
    Korf, Ulrike
    Beissbarth, Tim
    BIOINFORMATICS, 2010, 26 (18) : i596 - i602