Gelatin-methacryloyl hydrogels containing turnip mosaic virus for fabrication of nanostructured materials for tissue engineering

被引:13
作者
Gonzalez-Gamboa, Ivonne [1 ,2 ]
Velazquez-Lam, Edith [3 ]
Lobo-Zegers, Matias Jose [1 ,4 ]
Frias-Sanchez, Ada Itzel [1 ,4 ]
Tavares-Negrete, Jorge Alfonso [1 ,2 ]
Monroy-Borrego, Andrea [1 ,2 ]
Menchaca-Arrendondo, Jorge Luis [5 ]
Williams, Laura [6 ]
Lunello, Pablo [6 ]
Ponz, Fernando [3 ]
Moises Alvarez, Mario [1 ,2 ]
Trujillo-de Santiago, Grissel [1 ,4 ]
机构
[1] Tecnol Monterrey, Escuela Ingn & Ciencias, Ctr Biotecnol FEMSA, Monterrey, Nuevo Leon, Mexico
[2] Tecnol Monterrey, Escuela Ingn & Ciencias, Dept Bioingn, Monterrey, Nuevo Leon, Mexico
[3] Univ Politecn Madrid, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria CBGP, UPM INIA CSIC, Madrid, Spain
[4] Tecnol Monterrey, Escuela Ingn & Ciencias, Dept Ingn Mecatron & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Autonoma Nuevo Leon, Fac Ciencias Fis Matemat, Ctr Invest Ciencias Fis Matemat CICFIM, San Nicolas De Los Garza, Nuevo Leon, Mexico
[6] Agrenvec SL, Madrid, Spain
关键词
TuMV; GelMA; VNP; nanoscaffold; nanomesh; tissue engineering; bioprinting; biofabrication; CELL-ATTACHMENT; NANOPARTICLES; GROWTH;
D O I
10.3389/fbioe.2022.907601
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Current tissue engineering techniques frequently rely on hydrogels to support cell growth, as these materials strongly mimic the extracellular matrix. However, hydrogels often need ad hoc customization to generate specific tissue constructs. One popular strategy for hydrogel functionalization is to add nanoparticles to them. Here, we present a plant viral nanoparticle the turnip mosaic virus (TuMV), as a promising additive for gelatin methacryloyl (GelMA) hydrogels for the engineering of mammalian tissues. TuMV is a flexuous, elongated, tubular protein nanoparticle (700-750 nm long and 12-15 nm wide) and is incapable of infecting mammalian cells. These flexuous nanoparticles spontaneously form entangled nanomeshes in aqueous environments, and we hypothesized that this nanomesh structure could serve as a nanoscaffold for cells. Human fibroblasts loaded into GelMA-TuMV hydrogels exhibited similar metabolic activity to that of cells loaded in pristine GelMA hydrogels. However, cells cultured in GelMA-TuMV formed clusters and assumed an elongated morphology in contrast to the homogeneous and confluent cultures seen on GelMA surfaces, suggesting that the nanoscaffold material per se did not favor cell adhesion. We also covalently conjugated TuMV particles with epidermal growth factor (EGF) using a straightforward reaction scheme based on a Staudinger reaction. BJ cells cultured on the functionalized scaffolds increased their confluency by approximately 30% compared to growth with unconjugated EGF. We also provide examples of the use of GelMA-TuMV hydrogels in different biofabrication scenarios, include casting, flow-based-manufacture of filaments, and bioprinting. We envision TuMV as a versatile nanobiomaterial that can be useful for tissue engineering.
引用
收藏
页数:16
相关论文
共 69 条
  • [11] Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress
    Cristina Pedroza-Gonzalez, Sara
    Rodriguez-Salvador, Marisela
    Perez-Benitez, Baruc Emet
    Moises Alvarez, Mario
    Trujillo-de Santiago, Grissel
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2021, 7 (02) : 68 - 91
  • [12] Structure of Turnip mosaic virus and its viral-like particles
    Cuesta, Rebeca
    Yuste-Calvo, Carmen
    Gil-Carton, David
    Sanchez, Flora
    Ponz, Fernando
    Valle, Mikel
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [13] From infection to healing: The use of plant viruses in bioactive hydrogels
    Dickmeis, Christina
    Kauth, Louisa
    Commandeur, Ulrich
    [J]. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2021, 13 (01)
  • [14] Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications
    Elkhoury, Kamil
    Russell, Carina S.
    Sanchez-Gonzalez, Laura
    Mostafavi, Azadeh
    Williams, Tyrell J.
    Kahn, Cyril
    Peppas, Nicholas A.
    Arab-Tehrany, Elmira
    Tamayol, Ali
    [J]. ADVANCED HEALTHCARE MATERIALS, 2019, 8 (18)
  • [15] Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering
    Fathi-Achachelouei, Milad
    Keskin, Dilek
    Bat, Erhan
    Vrana, Nihal E.
    Tezcaner, Aysen
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2020, 108 (05) : 2041 - 2062
  • [16] Folia Biotech Inc, 2000, NCT02188810
  • [17] Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows
    Frias-Sanchez, Ada, I
    Quevedo-Moreno, Diego A.
    Samandari, Mohamadmahdi
    Tavares-Negrete, Jorge A.
    Hugo Sanchez-Rodriguez, Victor
    Gonzalez-Gamboa, Ivonne
    Ponz, Fernando
    Alvarez, Mario M.
    Trujillo-de Santiago, Grissel
    [J]. BIOFABRICATION, 2021, 13 (03)
  • [18] Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications
    Godoy-Gallardo, Maria
    Eckhard, Ulrich
    Delgado, Luis M.
    de Roo Puente, Yolanda J. D.
    Hoyos-Nogues, Mireia
    Javier Gil, F.
    Perez, Roman A.
    [J]. BIOACTIVE MATERIALS, 2021, 6 (12) : 4470 - 4490
  • [19] Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity
    Gonzalez-Gamboa, Ivonne
    Manrique, Pilar
    Sanchez, Flora
    Ponz, Fernando
    [J]. JOURNAL OF BIOTECHNOLOGY, 2017, 254 : 17 - 24
  • [20] Nanoparticles in tissue engineering: applications, challenges and prospects
    Hasan, Anwarul
    Morshed, Mahboob
    Memic, Adnan
    Hassan, Shabir
    Webster, Thomas J.
    Marei, Hany El-Sayed
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 : 5637 - 5655