Gelatin-methacryloyl hydrogels containing turnip mosaic virus for fabrication of nanostructured materials for tissue engineering

被引:13
作者
Gonzalez-Gamboa, Ivonne [1 ,2 ]
Velazquez-Lam, Edith [3 ]
Lobo-Zegers, Matias Jose [1 ,4 ]
Frias-Sanchez, Ada Itzel [1 ,4 ]
Tavares-Negrete, Jorge Alfonso [1 ,2 ]
Monroy-Borrego, Andrea [1 ,2 ]
Menchaca-Arrendondo, Jorge Luis [5 ]
Williams, Laura [6 ]
Lunello, Pablo [6 ]
Ponz, Fernando [3 ]
Moises Alvarez, Mario [1 ,2 ]
Trujillo-de Santiago, Grissel [1 ,4 ]
机构
[1] Tecnol Monterrey, Escuela Ingn & Ciencias, Ctr Biotecnol FEMSA, Monterrey, Nuevo Leon, Mexico
[2] Tecnol Monterrey, Escuela Ingn & Ciencias, Dept Bioingn, Monterrey, Nuevo Leon, Mexico
[3] Univ Politecn Madrid, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria CBGP, UPM INIA CSIC, Madrid, Spain
[4] Tecnol Monterrey, Escuela Ingn & Ciencias, Dept Ingn Mecatron & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Autonoma Nuevo Leon, Fac Ciencias Fis Matemat, Ctr Invest Ciencias Fis Matemat CICFIM, San Nicolas De Los Garza, Nuevo Leon, Mexico
[6] Agrenvec SL, Madrid, Spain
关键词
TuMV; GelMA; VNP; nanoscaffold; nanomesh; tissue engineering; bioprinting; biofabrication; CELL-ATTACHMENT; NANOPARTICLES; GROWTH;
D O I
10.3389/fbioe.2022.907601
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Current tissue engineering techniques frequently rely on hydrogels to support cell growth, as these materials strongly mimic the extracellular matrix. However, hydrogels often need ad hoc customization to generate specific tissue constructs. One popular strategy for hydrogel functionalization is to add nanoparticles to them. Here, we present a plant viral nanoparticle the turnip mosaic virus (TuMV), as a promising additive for gelatin methacryloyl (GelMA) hydrogels for the engineering of mammalian tissues. TuMV is a flexuous, elongated, tubular protein nanoparticle (700-750 nm long and 12-15 nm wide) and is incapable of infecting mammalian cells. These flexuous nanoparticles spontaneously form entangled nanomeshes in aqueous environments, and we hypothesized that this nanomesh structure could serve as a nanoscaffold for cells. Human fibroblasts loaded into GelMA-TuMV hydrogels exhibited similar metabolic activity to that of cells loaded in pristine GelMA hydrogels. However, cells cultured in GelMA-TuMV formed clusters and assumed an elongated morphology in contrast to the homogeneous and confluent cultures seen on GelMA surfaces, suggesting that the nanoscaffold material per se did not favor cell adhesion. We also covalently conjugated TuMV particles with epidermal growth factor (EGF) using a straightforward reaction scheme based on a Staudinger reaction. BJ cells cultured on the functionalized scaffolds increased their confluency by approximately 30% compared to growth with unconjugated EGF. We also provide examples of the use of GelMA-TuMV hydrogels in different biofabrication scenarios, include casting, flow-based-manufacture of filaments, and bioprinting. We envision TuMV as a versatile nanobiomaterial that can be useful for tissue engineering.
引用
收藏
页数:16
相关论文
共 69 条
  • [1] Alcala-Orozco Cesar R., 2020, Bioprinting, V18, pe00073, DOI 10.1016/j.bprint.2019.e00073
  • [2] 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine
    Annabi, Nasim
    Tamayol, Ali
    Uquillas, Jorge Alfredo
    Akbari, Mohsen
    Bertassoni, Luiz E.
    Cha, Chaenyung
    Camci-Unal, Gulden
    Dokmeci, Mehmet R.
    Peppas, Nicholas A.
    Khademhosseini, Ali
    [J]. ADVANCED MATERIALS, 2014, 26 (01) : 85 - 124
  • [3] Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering
    Babitha, S.
    Annamalai, Meenakshi
    Dykas, Michal Marcin
    Saha, Surajit
    Poddar, Kingshuk
    Venugopal, Jayarama Reddy
    Ramakrishna, Seeram
    Venkatesan, Thirumalai
    Korrapati, Purna Sai
    [J]. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (04) : 991 - 1001
  • [4] Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements
    Bakht, Syeda M.
    Pardo, Alberto
    Gomez-Florit, Manuel
    Reis, Rui L.
    Domingues, Rui M. A.
    Gomes, Manuela E.
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (25) : 5025 - 5038
  • [5] Recent Advances in the Use of Plant Virus-Like Particles as Vaccines
    Balke, Ina
    Zeltins, Andris
    [J]. VIRUSES-BASEL, 2020, 12 (03):
  • [6] The Staudinger Ligation
    Bednarek, Christin
    Wehl, Ilona
    Jung, Nicole
    Schepers, Ute
    Braese, Stefan
    [J]. CHEMICAL REVIEWS, 2020, 120 (10) : 4301 - 4354
  • [7] Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues
    Boularaoui, Selwa
    Shanti, Aya
    Lanotte, Michele
    Luo, Shaohong
    Bawazir, Sarah
    Lee, Sungmun
    Christoforou, Nicolas
    Khan, Kamran A.
    Stefanini, Cesare
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (12) : 5810 - 5822
  • [8] Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue
    Byambaa, Batzaya
    Annabi, Nasim
    Yue, Kan
    Trujillo-de Santiago, Grissel
    Moises Alvarez, Mario
    Jia, Weitao
    Kazemzadeh-Narbat, Mehdi
    Shin, Su Ryon
    Tamayol, Ali
    Khademhosseini, Ali
    [J]. ADVANCED HEALTHCARE MATERIALS, 2017, 6 (16)
  • [9] E-coli strain engineering for the production of advanced biopharmaceutical products
    Castineiras, Tania Selas
    Williams, Steven G.
    Hitchcock, Antony G.
    Smith, Daniel C.
    [J]. FEMS MICROBIOLOGY LETTERS, 2018, 365 (15)
  • [10] Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults
    Chichester, Jessica A.
    Green, Brian J.
    Jones, R. Mark
    Shoji, Yoko
    Miura, Kazutoyo
    Long, Carole A.
    Lee, Cynthia K.
    Ockenhouse, Christian F.
    Morin, Merribeth J.
    Streatfield, Stephen J.
    Yusibov, Vidadi
    [J]. VACCINE, 2018, 36 (39) : 5865 - 5871