A Fast and Sustainable Route to Bassanite Nanocrystals from Gypsum

被引:20
作者
Maslyk, Marcel [1 ]
Dallos, Zsolt [1 ,2 ]
Koziol, Martha [1 ]
Seiffert, Sebastian [1 ]
Hieke, Tim [1 ]
Petrovio, Katharina [3 ]
Kolb, Ute [1 ,2 ]
Mondeshki, Mihail [1 ]
Tremel, Wolfgang [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Dept Chem, Duesbergweg 10-14, D-55099 Mainz, Germany
[2] Tech Univ Darmstadt, Dept Mat & Geosci, Petersenstr 23, D-64287 Darmstadt, Germany
[3] Gottfried Wilhelm Leibniz Univ, Inst Anorgan Chem, Callinstr 3-9, D-30167 Hannover, Germany
关键词
ball-milling; bassanite; calcium sulfate; nanoparticles; polymorphism; CALCIUM-SULFATE HEMIHYDRATE; WATER; CRYSTALLIZATION; NANOPARTICLES; DIHYDRATE; EVOLUTION; MINERALS; PATHWAY; CEMENT; PHASE;
D O I
10.1002/adfm.202111852
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Calcium sulfate is an important construction material. More than 1600 million square meters of interior surfaces are covered with plasterboards in Europe each year. Plasterboard is manufactured by transforming mined or recycled gypsum (CaSO4 x 2 H2O) to bassanite (CaSO4 x 1/2H(2)O) in a time- and energy-consuming heating process. A fast and sustainable way to produce bassanite by solvent-assisted milling, thereby eliminating the need for energy-intensive dehydration, is described. The milling reaction is complete after approximate to 200 min. Kinetic studies revealed that gypsum crystals transform to bassanite by shear forces during milling. H-1 nuclear magnetic resonance (NMR) spectroscopic techniques and Fourier-transform infrared spectroscopy (FT-IR) show that the resulting bassanite nanocrystals are stabilized by surface functionalization with the auxiliary solvent methanol. Bassanite particles produced over extended milling times of 990 min form long-term stable dispersions without stabilizers and no signs of precipitation. Addition of water to bassanite leads to instant agglomeration, followed by a phase change to gypsum. The dispersibility in volatile methanol and the elucidation of the crystallization mechanism allow also for applications of the bassanite nanocrystals in hybrid materials.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Exploiting Confinement to Study the Crystallization Pathway of Calcium Sulfate [J].
Anduix-Canto, Clara ;
Levenstein, Mark A. ;
Kim, Yi-Yeoun ;
Godinho, Jose R. A. ;
Kulak, Alexander N. ;
Nino, Carlos Gonzalez ;
Withers, Philip J. ;
Wright, Jonathan P. ;
Kapur, Nikil ;
Christenson, Hugo K. ;
Meldrum, Fiona C. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (50)
[2]  
[Anonymous], 2003, EVA 10 0 REV 1
[3]  
[Anonymous], 2004, PDF 2 REL 2004
[4]  
Anthony J. W., 2003, Handbook of Mineralogy
[5]   Thermoelectric Cu-S-Based Materials Synthesized via a Scalable Mechanochemical Process [J].
Balaz, Peter ;
Achimovicova, Marcela ;
Balaz, Matej ;
Chen, Kan ;
Dobrozhan, Oleksandr ;
Guilmeau, Emmanuel ;
Hejtmanek, Jiri ;
Knizek, Karel ;
Kubickova, Lenka ;
Levinsky, Petr ;
Puchy, Viktor ;
Reece, Michael John ;
Varga, Peter ;
Zhang, Ruizhi .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (05) :2003-2016
[6]   The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (CaSO4 • 0.5H2O) [J].
Ballirano, P ;
Maras, A ;
Meloni, S ;
Caminiti, R .
EUROPEAN JOURNAL OF MINERALOGY, 2001, 13 (05) :985-993
[7]   Calcium sulfate hemihydrate is the inorganic mineral in statoliths of Scyphozoan medusae (Cnidaria) [J].
Becker, A ;
Sötje, I ;
Paulmann, C ;
Beckmann, F ;
Donath, T ;
Boese, R ;
Prymak, O ;
Tiemann, H ;
Epple, M .
DALTON TRANSACTIONS, 2005, (08) :1545-1550
[8]   INVESTIGATION OF CALCIUM SULPHATE-WATER SYSTEM BY INFRARED SPECTROSCOPY [J].
BENSTED, J ;
PRAKASH, S .
NATURE, 1968, 219 (5149) :60-&
[9]   Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate [J].
Bizzozero, Julien ;
Gosselin, Christophe ;
Scrivener, Karen L. .
CEMENT AND CONCRETE RESEARCH, 2014, 56 :190-202
[10]   TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C plus [J].
Coelho, Alan A. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 :210-218