Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes

被引:48
|
作者
Latorre-Pellicer, Ana [1 ]
Ascaso, Angela [2 ]
Trujillano, Laura [2 ]
Gil-Salvador, Marta [1 ]
Arnedo, Maria [1 ]
Lucia-Campos, Cristina [1 ]
Antonanzas-Perez, Rebeca [1 ]
Marcos-Alcalde, Inigo [3 ,4 ]
Parenti, Ilaria [5 ,6 ]
Bueno-Lozano, Gloria [2 ]
Musio, Antonio [7 ]
Puisac, Beatriz [1 ]
Kaiser, Frank J. [5 ,8 ]
Ramos, Feliciano J. [1 ,2 ]
Gomez-Puertas, Paulino [3 ]
Pie, Juan [1 ]
机构
[1] Univ Zaragoza, Unit Clin Genet & Funct Genom, Dept Pharmacol Physiol, Sch Med,CIBERER GCV02 & ISS Aragon, E-50009 Zaragoza, Spain
[2] Hosp Clin Univ Lozano Blesa, Dept Paediat, E-50009 Zaragoza, Spain
[3] Ctr Biol Mol Severo Ochoa, CBMSO CSIC UAM, Mol Modelling Grp, E-28049 Madrid, Spain
[4] Univ Francisco Vitoria, Sch Expt Sci, Biosci Res Inst, UFV, E-28223 Pozuelo De Alarcon, Spain
[5] Univ Lubeck, Inst Human Genet, Sect Funct Genet, D-23562 Lubeck, Germany
[6] IST Austria, A-3400 Klosterneuburg, Austria
[7] CNR, Ist Ric Genet & Biomed, I-56124 Pisa, Italy
[8] Univ Duisburg Essen, Univ Hosp Essen, Inst Human Genet, D-45147 Essen, Germany
关键词
Cornelia de Lange syndrome; Face2Gene; Facial recognition; Deep learning; NIPBL; MUTATIONS; SMC1A; INDIVIDUALS; PATIENT; MOSAICISM; VARIANTS; SPECTRUM; MILD;
D O I
10.3390/ijms21031042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Cohesin Mutations Induce Chromatin Conformation Perturbation of the H19/IGF2 Imprinted Region and Gene Expression Dysregulation in Cornelia de Lange Syndrome Cell Lines
    Pileggi, Silvana
    La Vecchia, Marta
    Colombo, Elisa Adele
    Fontana, Laura
    Colapietro, Patrizia
    Rovina, Davide
    Morotti, Annamaria
    Tabano, Silvia
    Porta, Giovanni
    Alcalay, Myriam
    Gervasini, Cristina
    Miozzo, Monica
    Sirchia, Silvia Maria
    BIOMOLECULES, 2021, 11 (11)
  • [42] MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome
    Parenti, Ilaria
    Diab, Farah
    Gil, Sara Ruiz
    Mulugeta, Eskeatnaf
    Casa, Valentina
    Berutti, Riccardo
    Brouwer, Rutger W. W.
    Dupe, Valerie
    Eckhold, Juliane
    Graf, Elisabeth
    Puisac, Beatriz
    Ramos, Feliciano
    Schwarzmayr, Thomas
    Gines, Macarena Moronta
    van Staveren, Thomas
    van IJcken, Wilfred F. J.
    Strom, Tim M.
    Pie, Juan
    Watrin, Erwan
    Kaiser, Frank J.
    Wendt, Kerstin S.
    CELL REPORTS, 2020, 31 (07):
  • [43] Classic Cornelia de Lange syndrome with variant of unknown significance detected in NIPBL gene mutation: a case report
    Jay J. Desai
    Sreelata B. Nair
    S. Pappachan
    Egyptian Journal of Medical Human Genetics, 22
  • [44] Prenatal Diagnosis of Cornelia de Lange Syndrome by 2D and 3D Sonography
    Ghazle, Hamad
    Chopra, Prajna
    Bhatt, Shweta
    JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY, 2011, 27 (04) : 171 - 175
  • [45] Deletion of 11q12.3-11q13.1 in a patient with intellectual disability and childhood facial features resembling Cornelia de Lange syndrome
    Boyle, Martine Isabel
    Jespersgaard, Cathrine
    Nazaryan, Lusine
    Ravn, Kirstine
    Brondum-Nielsen, Karen
    Bisgaard, Anne-Marie
    Tumer, Zeynep
    GENE, 2015, 572 (01) : 130 - 134
  • [46] The application of the facial analysis program Face2Gene in a single genetic counseling center: a retrospective study
    Yahya, Dinnar
    Stoyanova, Milena
    Hachmeriyan, Mari
    Levkova, Mariya
    EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE, 2025, 73 (01)
  • [47] Molecular Analysis of Hotspot Regions of ARX and MECP2 Genes in Intellectual Disability and Cornelia De Lange Syndrome
    Kulkarni, Gayatri
    Ranade, Suvidya
    INTERNATIONAL JOURNAL OF HUMAN GENETICS, 2017, 17 (02) : 56 - 63
  • [48] The effect of Nipped-B-like (Nipbl) haploinsufficiency on genome-wide cohesin binding and target gene expression: modeling Cornelia de Lange syndrome
    Newkirk, Daniel A.
    Chen, Yen-Yun
    Chien, Richard
    Zeng, Weihua
    Biesinger, Jacob
    Flowers, Ebony
    Kawauchi, Shimako
    Santos, Rosaysela
    Calof, Anne L.
    Lander, Arthur D.
    Xie, Xiaohui
    Yokomori, Kyoko
    CLINICAL EPIGENETICS, 2017, 9
  • [49] Novel Pathogenic Variant (c.3178G>A) in the SMC1A Gene in a Family With Cornelia de Lange Syndrome Identified by Exome Sequencing
    Jang, Mi-Ae
    Lee, Chang-Woo
    Kim, Jin-Kyung
    Ki, Chang-Seok
    ANNALS OF LABORATORY MEDICINE, 2015, 35 (06) : 639 - 642
  • [50] Prognostic Value of Genotype-Phenotype Correlations in X-Linked Myotubular Myopathy and the Use of the Face2Gene Application as an Effective Non-Invasive Diagnostic Tool
    Kusikova, Katarina
    Soltysova, Andrea
    Ficek, Andrej
    Feichtinger, Rene G.
    Mayr, Johannes A.
    Skopkova, Martina
    Gasperikova, Daniela
    Kolnikova, Miriam
    Ornig, Karoline
    Kalev, Ognian
    Weis, Serge
    Weis, Denisa
    GENES, 2023, 14 (12)