Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes

被引:48
|
作者
Latorre-Pellicer, Ana [1 ]
Ascaso, Angela [2 ]
Trujillano, Laura [2 ]
Gil-Salvador, Marta [1 ]
Arnedo, Maria [1 ]
Lucia-Campos, Cristina [1 ]
Antonanzas-Perez, Rebeca [1 ]
Marcos-Alcalde, Inigo [3 ,4 ]
Parenti, Ilaria [5 ,6 ]
Bueno-Lozano, Gloria [2 ]
Musio, Antonio [7 ]
Puisac, Beatriz [1 ]
Kaiser, Frank J. [5 ,8 ]
Ramos, Feliciano J. [1 ,2 ]
Gomez-Puertas, Paulino [3 ]
Pie, Juan [1 ]
机构
[1] Univ Zaragoza, Unit Clin Genet & Funct Genom, Dept Pharmacol Physiol, Sch Med,CIBERER GCV02 & ISS Aragon, E-50009 Zaragoza, Spain
[2] Hosp Clin Univ Lozano Blesa, Dept Paediat, E-50009 Zaragoza, Spain
[3] Ctr Biol Mol Severo Ochoa, CBMSO CSIC UAM, Mol Modelling Grp, E-28049 Madrid, Spain
[4] Univ Francisco Vitoria, Sch Expt Sci, Biosci Res Inst, UFV, E-28223 Pozuelo De Alarcon, Spain
[5] Univ Lubeck, Inst Human Genet, Sect Funct Genet, D-23562 Lubeck, Germany
[6] IST Austria, A-3400 Klosterneuburg, Austria
[7] CNR, Ist Ric Genet & Biomed, I-56124 Pisa, Italy
[8] Univ Duisburg Essen, Univ Hosp Essen, Inst Human Genet, D-45147 Essen, Germany
关键词
Cornelia de Lange syndrome; Face2Gene; Facial recognition; Deep learning; NIPBL; MUTATIONS; SMC1A; INDIVIDUALS; PATIENT; MOSAICISM; VARIANTS; SPECTRUM; MILD;
D O I
10.3390/ijms21031042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] NIPHL gene responsible for Cornelia de Lange syndrome, a severe developmental disorder
    Ben-Asher, E
    Lancet, D
    ISRAEL MEDICAL ASSOCIATION JOURNAL, 2004, 6 (09): : 571 - 572
  • [22] Spectrum of NIPBL gene mutations in Polish patients with Cornelia de Lange syndrome
    Alina Kuzniacka
    Jolanta Wierzba
    Magdalena Ratajska
    Beata S. Lipska
    Magdalena Koczkowska
    Monika Malinowska
    Janusz Limon
    Journal of Applied Genetics, 2013, 54 : 27 - 33
  • [23] Face scanning and spontaneous emotion preference in Cornelia de Lange syndrome and Rubinstein-Taybi syndrome
    Hayley Crawford
    Joanna Moss
    Joseph P. McCleery
    Giles M. Anderson
    Chris Oliver
    Journal of Neurodevelopmental Disorders, 2015, 7
  • [24] Molecular characterization of two novel intronic variants of NIPBL gene detected in unrelated Cornelia de Lange syndrome patients
    Krawczynska, Natalia
    Wierzba, Jolanta
    Jasiecki, Jacek
    Wasag, Bartosz
    BMC MEDICAL GENETICS, 2019, 20
  • [25] HEARING IMPAIRMENT IN 2 BOYS WITH CORNELIA-DE-LANGE-SYNDROME
    ICHIYAMA, T
    HAYASHI, T
    TANAKA, H
    NISHIKAWA, M
    FURUKAWA, S
    BRAIN & DEVELOPMENT, 1994, 16 (06) : 485 - 487
  • [26] Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome
    Cucco, Francesco
    Sarogni, Patrizia
    Rossato, Sara
    Alpa, Mirella
    Patimo, Alessandra
    Latorre, Ana
    Magnani, Cinzia
    Puisac, Beatriz
    Ramos, Feliciano J.
    Pie, Juan
    Musio, Antonio
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2020, 182 (07) : 1690 - 1696
  • [27] A Functional Mutation in HDAC8 Gene as Novel Diagnostic Marker for Cornelia De Lange Syndrome
    Gao, Xueren
    Huang, Zhuo
    Fan, Yanjie
    Sun, Yu
    Liu, Huili
    Wang, Lili
    Gu, Xuefan
    Yu, Yongguo
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 47 (06) : 2388 - 2395
  • [28] uORF-introducing variants in the 5′UTR of the NIPBL gene as a cause of Cornelia de Lange syndrome
    Coursimault, Juliette
    Rovelet-Lecrux, Anne
    Cassinari, Kevin
    Brischoux-Boucher, Elise
    Saugier-Veber, Pascale
    Goldenberg, Alice
    Lecoquierre, Francois
    Drouot, Nathalie
    Richard, Anne-Claire
    Vera, Gabriella
    Coutant, Sophie
    Quenez, Olivier
    Rolain, Marion
    Bonnet, Celine
    Bronner, Myriam
    Lecourtois, Magalie
    Nicolas, Gael
    HUMAN MUTATION, 2022, 43 (09) : 1239 - 1248
  • [29] A De novo HDAC2 variant in a patient with features consistent with Cornelia de Lange syndrome phenotype
    Wagner, Victoria F.
    Hillman, Paul R.
    Britt, Allison D.
    Ray, Joseph W.
    Farach, Laura S.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2019, 179 (05) : 852 - 856
  • [30] Facial recognition accuracy in photographs of Thai neonates with Down syndrome among physicians and the Face2Gene application
    Srisraluang, Wewika
    Rojnueangnit, Kitiwan
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2021, 185 (12) : 3701 - 3705