Objective Diagnosis of Fibromyalgia Using Neuroretinal Evaluation and Artificial Intelligence

被引:6
|
作者
Boquete, Luciano [1 ]
Vicente, Maria-Jose [2 ,3 ]
Miguel-Jimenez, Juan-Manuel [1 ]
Sanchez-Morla, Eva-Maria [4 ,5 ,6 ]
Ortiz, Miguel [7 ]
Satue, Maria [2 ,3 ]
Garcia-Martin, Elena [2 ,3 ]
机构
[1] Univ Alcala, Dept Elect, Biomed Engn Grp, Alcala De Henares, Spain
[2] Miguel Servet Univ Hosp, Dept Ophthalmol, Zaragoza, Spain
[3] Univ Zaragoza, Aragon Hlth Res Inst IIS Aragon, Miguel Servet Ophthalmol Res Grp GIMSO, Zaragoza, Spain
[4] Hosp 12 Octubre Res Inst I 12, Dept Psychiat, Madrid, Spain
[5] Univ Complutense Madrid, Fac Med, Madrid, Spain
[6] CIBERSAM Biomed Res Networking Ctr Mental Hlth, Madrid, Spain
[7] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Esch Sur Alzette, Luxembourg
关键词
Fibromyalgia; Optical coherence tomography; Neurodegeneration; Artificial intelligence; Observational descriptive study; OPTICAL COHERENCE TOMOGRAPHY; NERVE-FIBER LAYER; FUNCTIONAL DISABILITY; MULTIPLE-SCLEROSIS; HEALTH-STATUS; THICKNESS; QUESTIONNAIRE; CRITERIA; DISEASE;
D O I
10.1016/j.ijchp.2022.100294
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background/Objective: This study aims to identify objective biomarkers of fibromyalgia (FM) by applying artificial intelligence algorithms to structural data on the neuroretina obtained using swept-source optical coherence tomography (SS-OCT). Method: The study cohort comprised 29 FM patients and 32 control subjects. The thicknesses of complete retina, 3 retinal layers [ganglion cell layer (GCL+), GCL++ (between the inner limiting membrane and the inner nuclear layer boundaries) and retinal nerve fiber layer (RNFL)] and choroid in 9 areas around the macula were obtained using SS-OCT. Discriminant capacity was evaluated using the area under the curve (AUC) and the Relief algorithm. A diagnostic aid system with an automatic classifier was implemented. Results: No significant difference (p > .660) was found anywhere in the choroid. In the RNFL, a significant difference was found in the inner inferior region (p = .010). In the GCL+, GCL+ + layers and complete retina, a significant difference was found in the 4 regions defining the inner ring: temporal, superior, nasal and inferior. Applying an ensemble RUSBoosted tree classifier to the features with greatest discriminant capacity achieved accuracy = .82 and AUC = .82. Conclusions: This study identifies a potential novel objective and non-invasive biomarker of FM based on retina analysis using SS-OCT.(c) 2022 Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls
    Maleki, Shadi Farabi
    Yousefi, Milad
    Afshar, Sayeh
    Pedrammehr, Siamak
    Lim, Chee Peng
    Jafarizadeh, Ali
    Asadi, Houshyar
    SEMINARS IN OPHTHALMOLOGY, 2024, 39 (04) : 271 - 288
  • [32] Artificial intelligence for melanoma diagnosis
    Tschandl, Philipp
    ITALIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY, 2021, 156 (03) : 289 - 299
  • [33] Mutational signatures for breast cancer diagnosis using artificial intelligence
    Patrick Odhiambo
    Harrison Okello
    Annette Wakaanya
    Clabe Wekesa
    Patrick Okoth
    Journal of the Egyptian National Cancer Institute, 35
  • [34] Fault Diagnosis Using Artificial Intelligence for the Spindle of Machine Tools
    Yoon, Sungjae
    Lee, Munyoung
    Lee, Jeonghwan
    Lee, Seong-hee
    Na, Jungchan
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2021, 45 (05) : 401 - 408
  • [35] Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review
    Popa, Stefan Lucian
    Ismaiel, Abdulrahman
    Abenavoli, Ludovico
    Padureanu, Alexandru Marius
    Dita, Miruna Oana
    Bolchis, Roxana
    Munteanu, Mihai Alexandru
    Brata, Vlad Dumitru
    Pop, Cristina
    Bosneag, Andrei
    Dumitrascu, Dinu Iuliu
    Barsan, Maria
    David, Liliana
    MEDICINA-LITHUANIA, 2023, 59 (05):
  • [36] Power transformer fault diagnosis using DGA and artificial intelligence
    Shahrabad S.J.T.
    Ghods V.
    Askari M.T.
    Ghods, Vahid (V.ghods@semnaniau.ac.ir), 1600, Bentham Science Publishers, P.O. Box 294, Bussum, 1400 AG, Netherlands (13): : 579 - 587
  • [37] Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence
    Huo, Yan
    Chen, Xuan
    Khan, Gauhar Ali
    Wang, Yan
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, 262 (04) : 1337 - 1349
  • [38] Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: a systematic review and meta-analysis
    Hashemi, Hassan
    Doroodgar, Farideh
    Niazi, Sana
    Khabazkhoob, Mehdi
    Heidari, Zahra
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, 262 (04) : 1017 - 1039
  • [39] Diagnosis of Gallbladder Disease Using Artificial Intelligence: A Comparative Study
    Ahmed Mahdi Obaid
    Amina Turki
    Hatem Bellaaj
    Mohamed Ksantini
    International Journal of Computational Intelligence Systems, 17
  • [40] Diagnosis of Gallbladder Disease Using Artificial Intelligence: A Comparative Study
    Obaid, Ahmed Mahdi
    Turki, Amina
    Bellaaj, Hatem
    Ksantini, Mohamed
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)