Classical Nucleation Theory Description of Active Colloid Assembly

被引:68
作者
Redner, Gabriel S. [1 ]
Wagner, Caleb G. [1 ]
Baskaran, Aparna [1 ]
Hagan, Michael F. [1 ]
机构
[1] Brandeis Univ, Martin Fisher Sch Phys, Waltham, MA 02453 USA
关键词
HOMOGENEOUS NUCLEATION; BROWNIAN PARTICLES; MATTER; SIMULATIONS; SUSPENSIONS; CRYSTALS; ENSEMBLE; DYNAMICS; BEHAVIOR; SYSTEMS;
D O I
10.1103/PhysRevLett.117.148002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonaligning self-propelled particles with purely repulsive excluded volume interactions undergo athermal motility-induced phase separation into a dilute gas and a dense cluster phase. Here, we use enhanced sampling computational methods and analytic theory to examine the kinetics of formation of the dense phase. Despite the intrinsically nonequilibrium nature of the phase transition, we show that the kinetics can be described using an approach analogous to equilibrium classical nucleation theory, governed by an effective free energy of cluster formation with identifiable bulk and surface terms. The theory captures the location of the binodal, nucleation rates as a function of supersaturation, and the cluster size distributions below the binodal, while discrepancies in the metastable region reveal additional physics about the early stages of active crystal formation. The success of the theory shows that a framework similar to equilibrium thermodynamics can be obtained directly from the microdynamics of an active system, and can be used to describe the kinetics of evolution toward nonequilibrium steady states.
引用
收藏
页数:7
相关论文
共 50 条
[41]   The role of the diffusion in the predictions of the classical nucleation theory for quasi-real systems differ in dipole moment value [J].
Koperwas, Kajetan ;
Kaskosz, Filip ;
Affouard, Frederic ;
Grzybowski, Andrzej ;
Paluch, Marian .
SCIENTIFIC REPORTS, 2022, 12 (01)
[42]   Mesoscopic scale description of nucleation processes in glasses [J].
Dargaud, Olivier ;
Cormier, Laurent ;
Menguy, Nicolas ;
Patriarche, Gilles ;
Calas, Georges .
APPLIED PHYSICS LETTERS, 2011, 99 (02)
[43]   Activated complex theory of nucleation [J].
Vlasov, Valeriy A. .
EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (03)
[44]   An Active Approach to Colloidal Self-Assembly [J].
Mallory, Stewart A. ;
Valeriani, Chantal ;
Cacciuto, Angelo .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 :59-79
[45]   Nucleation by rRNA Dictates the Precision of Nucleolus Assembly [J].
Falahati, Hanieh ;
Pelham-Webb, Bobbie ;
Blythe, Shelby ;
Wieschaus, Eric .
CURRENT BIOLOGY, 2016, 26 (03) :277-285
[46]   Single molecule charge transport: from a quantum mechanical to a classical description [J].
Kocherzhenko, Aleksey A. ;
Grozema, Ferdinand C. ;
Siebbeles, Laurens D. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (06) :2096-2110
[47]   A Mixed Quantum-Classical Description of Excitation Energy Transfer in Supramolecular Complexes: Forster Theory and beyond [J].
Megow, Joerg ;
Roeder, Beate ;
Kulesza, Alexander ;
Bonacic-Koutecky, Vlasta ;
May, Volkhard .
CHEMPHYSCHEM, 2011, 12 (03) :645-656
[48]   Landau theory description of observed isotropic to anisotropic phase transition in mixed clay gels [J].
Pujala, Ravi Kumar ;
Pawar, Nisha ;
Bohidar, H. B. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (19)
[49]   Temperature of critical clusters in nucleation theory: Generalized Gibbs' approach [J].
Schmelzer, Juern W. P. ;
Boltachev, Grey Sh ;
Abyzov, Alexander S. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (03)
[50]   Aggregation according to classical kinetics: From nucleation to coarsening [J].
Farjoun, Yossi ;
Neu, John C. .
PHYSICAL REVIEW E, 2011, 83 (05)