Deep learning-based advances and applications for single-cell RNA-sequencing data analysis

被引:25
作者
Bao, Siqi [1 ,2 ,3 ,4 ]
Li, Ke [5 ]
Yan, Congcong [5 ]
Zhang, Zicheng [5 ]
Qu, Jia [1 ,2 ,4 ,6 ]
Zhou, Meng [6 ,7 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Hainan, Peoples R China
[2] Wenzhou Med Univ, Sch Ophthalmol & Optometry, Wenzhou 325027, Peoples R China
[3] Wenzhou Med Univ, Eye Hosp, Sch Biomed Engn, Wenzhou 325027, Peoples R China
[4] Hainan Inst Real World Data, Wenzhou, Peoples R China
[5] Wenzhou Med Univ, Sch Biomed Engn, Wenzhou, Peoples R China
[6] Wenzhou Med Univ, Eye Hosp, Wenzhou 325027, Peoples R China
[7] Wenzhou Med Univ, Sch Ophthalmol & Optometry, Sch Biomed Engn, Wenzhou 325027, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-sequencing; deep learning; bioinformatics; GENE-EXPRESSION; MODEL;
D O I
10.1093/bib/bbab473
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rapid development of single-cell RNA-sequencing (scRNA-seq) technology has raised significant computational and analytical challenges. The application of deep learning to scRNA-seq data analysis is rapidly evolving and can overcome the unique challenges in upstream (quality control and normalization) and downstream (cell-, gene- and pathway-level) analysis of scRNA-seq data. In the present study, recent advances and applications of deep learning-based methods, together with specific tools for scRNA-seq data analysis, were summarized. Moreover, the future perspectives and challenges of deep-learning techniques regarding the appropriate analysis and interpretation of scRNA-seq data were investigated. The present study aimed to provide evidence supporting the biomedical application of deep learning-based tools and may aid biologists and bioinformaticians in navigating this exciting and fast-moving area.
引用
收藏
页数:13
相关论文
共 75 条
[1]   Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining [J].
Alessandri, Luca ;
Cordero, Francesca ;
Beccuti, Marco ;
Licheri, Nicola ;
Arigoni, Maddalena ;
Olivero, Martina ;
Di Renzo, Maria Flavia ;
Sapino, Anna ;
Calogero, Raffaele .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
[2]   rCASC: reproducible classification analysis of single-cell sequencing data [J].
Alessandri, Luca ;
Cordero, Francesca ;
Beccuti, Marco ;
Arigoni, Maddalena ;
Olivero, Martina ;
Romano, Greta ;
Rabellino, Sergio ;
Licheri, Nicola ;
De Libero, Gennaro ;
Pace, Luigia ;
Calogero, Raffaele A. .
GIGASCIENCE, 2019, 8 (09)
[3]   An Introduction to the Analysis of Single-Cell RNA-Sequencing Data [J].
AlJanahi, Aisha A. ;
Danielsen, Mark ;
Dunbar, Cynthia E. .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 :189-196
[4]  
AmodioM vanDijkD, NAT METHODS, V16, P1139
[5]  
[Anonymous], 2018, J Intell Fuzzy Syst
[6]   DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data [J].
Arisdakessian, Cedric ;
Poirion, Olivier ;
Yunits, Breck ;
Zhu, Xun ;
Garmire, Lana X. .
GENOME BIOLOGY, 2019, 20 (01)
[7]   Imputation of single-cell gene expression with an autoencoder neural network [J].
Badsha, Md Bahadur ;
Li, Rui ;
Liu, Boxiang ;
Li, Yang, I ;
Xian, Min ;
Banovich, Nicholas E. ;
Fu, Audrey Qiuyan .
QUANTITATIVE BIOLOGY, 2020, 8 (01) :78-94
[8]   MARS: discovering novel cell types across heterogeneous single-cell experiments [J].
Brbic, Maria ;
Zitnik, Marinka ;
Wang, Sheng ;
Pisco, Angela O. ;
Altman, Russ B. ;
Darmanis, Spyros ;
Leskovec, Jure .
NATURE METHODS, 2020, 17 (12) :1200-+
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]   Joint profiling of chromatin accessibility and gene expression in thousands of single cells [J].
Cao, Junyue ;
Cusanovich, Darren A. ;
Ramani, Vijay ;
Aghamirzaie, Delasa ;
Pliner, Hannah A. ;
Hill, Andrew J. ;
Daza, Riza M. ;
McFaline-Figueroa, Jose L. ;
Packer, Jonathan S. ;
Christiansen, Lena ;
Steemers, Frank J. ;
Adey, Andrew C. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2018, 361 (6409) :1380-1385