Activation behavior and dielectric relaxation in polyvinyl alcohol and multiwall carbon nanotube composite films

被引:31
作者
Chakraborty, G. [1 ]
Meikap, A. K. [1 ]
Babu, R. [2 ]
Blau, W. J. [2 ]
机构
[1] Natl Inst Technol, Dept Phys, Durgapur 713209, W Bengal, India
[2] Univ Dublin Trinity Coll, Dept Phys, Dublin 2, Ireland
关键词
Polyvinyl alcohol; Multi walled Carbon nanotubes; Chemical synthesis; Electric modulus; MECHANICAL-PROPERTIES; POLYMER; CONDUCTIVITY; NANOCOMPOSITES; SPECTROSCOPY; POLYANILINE; FIBERS;
D O I
10.1016/j.ssc.2011.03.013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The dc and ac electrical transport property of Polyvinyl Alcohol-Multiwall Carbon Nanotubes (PVA-MWNT) composites has been investigated within a temperature range 77 <= T <= 300 K and in the frequency range 20Hz-1MHz. The temperature variation of dc conductivity gives the presence of two different activation energies. The dielectric properties of the samples have been explained in terms of electric modulus vector. The dielectric relaxation has been explained in terms of interfacial polarization occurring in between the insulating PVA matrix and MWNT conductive filler. The variation of the relaxation time with temperature also indicates the presence of two different activation energies. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 758
页数:5
相关论文
共 34 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]   CALCULATION OF VARIOUS RELAXATION-TIMES AND CONDUCTIVITY FOR A SINGLE DIELECTRIC-RELAXATION PROCESS [J].
CAO, WQ ;
GERHARDT, R .
SOLID STATE IONICS, 1990, 42 (3-4) :213-221
[3]   Characterization and Electrical Transport Properties of Polyaniline and Multiwall Carbon Nanotube Composites [J].
Chakraborty, G. ;
Guatak, S. ;
Meikap, A. K. ;
Woods, T. ;
Babu, R. ;
Blau, W. J. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2010, 48 (15) :1767-1775
[4]   A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube-polymer composites [J].
Chen, J ;
Ramasubramaniam, R ;
Xue, C ;
Liu, H .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (01) :114-119
[5]   Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers [J].
Chen, J ;
Liu, HY ;
Weimer, WA ;
Halls, MD ;
Waldeck, DH ;
Walker, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9034-9035
[6]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[7]  
Dai LM, 2001, ADV MATER, V13, P899, DOI 10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO
[8]  
2-G
[9]   Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J].
Dalton, AB ;
Stephan, C ;
Coleman, JN ;
McCarthy, B ;
Ajayan, PM ;
Lefrant, S ;
Bernier, P ;
Blau, WJ ;
Byrne, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (43) :10012-10016
[10]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703