Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2008年 / 13卷
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 50 条
[41]   ASYMPTOTIC BEHAVIOR FOR RANDOM WALK IN RANDOM ENVIRONMENT WITH HOLDING TIMES [J].
毛明志 ;
李志民 .
ActaMathematicaScientia, 2010, 30 (05) :1696-1708
[42]   Scaling limit theorem for transient random walk in random environment [J].
Hong, Wenming ;
Yang, Hui .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) :1033-1044
[43]   Random walk in mixed random environment without uniform ellipticity [J].
Ostap Hryniv ;
Mikhail V. Menshikov ;
Andrew R. Wade .
Proceedings of the Steklov Institute of Mathematics, 2013, 282 :106-123
[44]   Quenched sub-exponential tail estimates for one-dimensional random walk in random environment [J].
Gantert, N ;
Zeitouni, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) :177-190
[45]   Excited random walk in a Markovian environment [J].
Travers, Nicholas F. .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[46]   Random Walk in deterministically changing environment [J].
Dolgopyat, Dmitry ;
Liverani, Carlangelo .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 :89-116
[47]   Once reinforced random walk on Z x Γ [J].
Kious, Daniel ;
Schapira, Bruno ;
Singh, Arvind .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04) :2219-2242
[48]   Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment [J].
Peterson, Jonathon .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :685-709
[49]   Some Probability Properties of Random Walk in Time-Random Environment [J].
Zhang Xiao-min .
WuhanUniversityJournalofNaturalSciences, 2004, (02) :139-143
[50]   Weak Quenched Invariance Principle for Random Walk with Random Environment in Time [J].
Lu, You ;
Hong, Wenming .
FRONTIERS OF MATHEMATICS, 2025,