Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2008年 / 13卷
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 50 条
  • [31] ASYMPTOTIC BEHAVIOR FOR RANDOM WALK IN RANDOM ENVIRONMENT WITH HOLDING TIMES
    Mao Mingzhi
    Li Zhimin
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1696 - 1708
  • [32] Mott Law as Upper Bound for a Random Walk in a Random Environment
    A. Faggionato
    P. Mathieu
    [J]. Communications in Mathematical Physics, 2008, 281 : 263 - 286
  • [33] RANDOM-WALK IN RANDOM ENVIRONMENT - A COUNTEREXAMPLE WITHOUT POTENTIAL
    BRAMSON, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 863 - 875
  • [34] Scaling limit theorem for transient random walk in random environment
    Wenming Hong
    Hui Yang
    [J]. Frontiers of Mathematics in China, 2018, 13 : 1033 - 1044
  • [35] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Wang, Yuejiao
    Liu, Zaiming
    Liu, Quansheng
    Li, Yingqiu
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1345 - 1362
  • [36] The limits of Sinai's simple random walk in random environment
    Hu, YY
    Shi, Z
    [J]. ANNALS OF PROBABILITY, 1998, 26 (04) : 1477 - 1521
  • [37] A criterion for transience of multidimensional branching random walk in random environment
    Mueller, Sebastian
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1189 - 1202
  • [38] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [39] Quenched Sub-Exponential Tail Estimates for One-Dimensional Random Walk in Random Environment
    Nina Gantert
    Ofer Zeitouni
    [J]. Communications in Mathematical Physics, 1998, 194 : 177 - 190
  • [40] Asymptotic Properties of a Branching Random Walk with a Random Environment in Time
    Yuejiao Wang
    Zaiming Liu
    Quansheng Liu
    Yingqiu Li
    [J]. Acta Mathematica Scientia, 2019, 39 : 1345 - 1362