Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2008年 / 13卷
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 50 条
  • [21] The local time of simple random walk in random environment
    Hu, YY
    Shi, Z
    JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (03) : 765 - 793
  • [22] CRITICAL RANDOM-WALK IN RANDOM ENVIRONMENT ON TREES
    PEMANTLE, R
    PERES, Y
    ANNALS OF PROBABILITY, 1995, 23 (01) : 105 - 140
  • [23] Subsequential tightness for branching random walk in random environment
    Kriechbaum, Xaver
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [24] Symmetric random walk in random environment in one dimension
    Katalin Nagy
    Periodica Mathematica Hungarica, 2002, 45 (1-2) : 101 - 120
  • [25] QUENCHED LIMITS FOR TRANSIENT, ZERO SPEED ONE-DIMENSIONAL RANDOM WALK IN RANDOM ENVIRONMENT
    Peterson, Jonathon
    Zeitouni, Ofer
    ANNALS OF PROBABILITY, 2009, 37 (01) : 143 - 188
  • [26] Recurrence of reinforced random walk on a ladder
    Sellke, T
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 301 - 310
  • [27] The critical branching random walk in a random environment dies out
    Garet, Olivier
    Marchand, Regine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 15
  • [28] Branching random walk in a random time-independent environment
    Chernousova, Elena
    Hryniv, Ostap
    Molchanov, Stanislav
    MATHEMATICAL POPULATION STUDIES, 2023, 30 (02) : 73 - 94
  • [29] ASYMPTOTIC BEHAVIOR FOR RANDOM WALK IN RANDOM ENVIRONMENT WITH HOLDING TIMES
    Mao Mingzhi
    Li Zhimin
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1696 - 1708
  • [30] Mott Law as Upper Bound for a Random Walk in a Random Environment
    A. Faggionato
    P. Mathieu
    Communications in Mathematical Physics, 2008, 281 : 263 - 286