Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 16 条
[1]  
COPPERSMITH D, 1986, UNPUB RANDOM WALK RE
[2]   DE FINETTI THEOREM FOR MARKOV-CHAINS [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF PROBABILITY, 1980, 8 (01) :115-130
[3]  
Diaconis P., 1987, BAYESIAN STAT, V3, P111
[4]   Bayesian analysis for reversible Markov chains [J].
Diaconis, Persi ;
Rolles, Silke W. W. .
ANNALS OF STATISTICS, 2006, 34 (03) :1270-1292
[5]  
KEANE M. S., 2000, INFINITE DIMENSIONAL, V52, P217
[6]   MATRIX GENERALIZATIONS OF SOME THEOREMS ON TREES, CYCLES AND CO-CYCLES IN GRAPHS [J].
MAURER, SB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) :143-148
[7]   Edge-reinforced random walk on a ladder [J].
Merkl, F ;
Rolles, SWW .
ANNALS OF PROBABILITY, 2005, 33 (06) :2051-2093
[8]  
Merkl F., 2006, LECT NOTES MONOGR SE, V48, P66
[9]  
MERKL F, RECURRENCE EDGE REIN
[10]  
MERKL F, IN PRESS PROBABILITY