Moderate deviations for empirical measures of Markov chains: Upper bounds

被引:25
作者
de Acosta, A [1 ]
Chen, X [1 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
empirical measures; Markov chains; geometric ergodicity; moderate deviations; regeneration-split chain method; projective system;
D O I
10.1023/A:1022673000778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain upper bounds for moderate deviations of empirical measures of Markov chains with general state space in the tau-topology under the minimal assumption of geometric ergodicity. The regeneration-split chain method and a result on projective systems are employed in the proof.
引用
收藏
页码:1075 / 1110
页数:36
相关论文
共 20 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]   NEW APPROACH TO THE LIMIT THEORY OF RECURRENT MARKOV-CHAINS [J].
ATHREYA, KB ;
NEY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :493-501
[3]  
Chen X., 1991, CHINESE J APPL PROBA, V7, P24
[4]  
CHEN X, 1996, IN PRESS MEMOIRS AMS
[5]  
Chung K. L., 1967, MARKOV CHAINS STATIO
[6]  
de Acosta A, 1997, ANN PROBAB, V25, P259
[7]  
de Acosta A., 1997, Festschrift for Lucien Le Cam, P143, DOI [10.1007/978-1-4612-1880-79, 10.1007/978-1-4612-1880-7_9, DOI 10.1007/978-1-4612-1880-7_9]
[8]   LARGE DEVIATIONS FOR VECTOR-VALUED FUNCTIONALS OF A MARKOV-CHAIN - LOWER BOUNDS [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1988, 16 (03) :925-960
[9]  
DEACOSTA A, 1992, T AM MATH SOC, V329, P357
[10]  
Dembo A., 1993, Large deviations techniques and applications