The impact of progenitor asymmetries on the neutrino-driven convection in core-collapse supernovae

被引:7
|
作者
Kazeromi, Remi [1 ]
Abdikamalov, Ernazar [2 ]
机构
[1] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[2] Nazarbayev Univ, Dept Phys, Nur Sultan 010000, Kazakhstan
关键词
convection; hydrodynamics; instabilities; turbulence; supernovae: general; ADAPTIVE MESH REFINEMENT; 3-DIMENSIONAL SIMULATIONS; ACCRETION; SHOCK; HYDRODYNAMICS; PERTURBATIONS; INSTABILITY; MODEL;
D O I
10.1093/mnras/staa944
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The explosion of massive stars in core-collapse supernovae may be aided by the convective instabilities that develop in their innermost nuclear burning shells. The resulting fluctuations support the explosion by generating additional turbulence behind the supernova shock. It was suggested that the buoyant density perturbations arising from the interaction of the pre-collapse asymmetrieswith the shock may be the primary contributor to the enhancement of the neutrino-driven turbulent convection in the post-shock region. Employing three-dimensional numerical simulations of a toy model, we investigate the impact of such density perturbations on the post-shock turbulence. We consider a wide range of perturbation parameters. The spatial scale and the amplitude of the perturbations are found to be of comparable importance. The turbulence is particularly enhanced when the perturbation frequency is close to that of the convective turnovers in the gain region. Our analysis confirms that the buoyant density perturbations is indeed the main source of the additional turbulence in the gain region, validating the previous order-of-magnitude estimates.
引用
收藏
页码:5360 / 5373
页数:14
相关论文
共 50 条
  • [21] Neutrino-driven core-collapse supernova yields in Galactic chemical evolution
    Jost, Finia P.
    Molero, Marta
    Navo, Gerard
    Arcones, Almudena
    Obergaulinger, Martin
    Matteucci, Francesca
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 536 (03) : 2135 - 2148
  • [22] The r-process in neutrino-driven winds from nascent, "compact" neutron stars of core-collapse supernovae
    Wanajo, S
    Kajino, T
    Mathews, GJ
    Otsuki, K
    ASTROPHYSICAL JOURNAL, 2001, 554 (01): : 578 - 586
  • [23] Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae
    Kotake, K
    Sawai, H
    Yamada, S
    Sato, K
    ASTROPHYSICAL JOURNAL, 2004, 608 (01): : 391 - 404
  • [24] The impact of asymmetric neutrino emissions on nucleosynthesis in core-collapse supernovae
    Fujimoto, Shin-ichiro
    Nagakura, Hiroki
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (01) : L114 - L118
  • [25] Impact of sterile neutrino dark matter on core-collapse supernovae
    Warren, Mackenzie L.
    Mathews, Grant J.
    Meixner, Matthew
    Hidaka, Jun
    Kajino, Toshitaka
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (25):
  • [26] Neutrino Emission as Diagnostics of Core-Collapse Supernovae
    Mueller, B.
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69, 2019, 69 : 253 - 278
  • [27] THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE
    O'Connor, Evan
    Ott, Christian D.
    ASTROPHYSICAL JOURNAL, 2013, 762 (02):
  • [28] Sterile neutrino oscillations in core-collapse supernovae
    Warren, MacKenzie L.
    Meixner, Matthew
    Mathews, Grant
    Hidaka, Jun
    Kajino, Toshitaka
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [29] THE PHYSICS OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE
    Pejcha, Ondrej
    Thompson, Todd A.
    ASTROPHYSICAL JOURNAL, 2012, 746 (01):
  • [30] Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm (vol 1, pg 713, 2017)
    Terreran, G.
    Pumo, M. L.
    Chen, T-W.
    Moriya, T. J.
    Taddia, F.
    Dessart, L.
    Zampieri, L.
    Smartt, S. J.
    Benetti, S.
    Inserra, C.
    Cappellaro, E.
    Nicholl, M.
    Fraser, M.
    Wyrzykowski, L.
    Udalski, A.
    Howell, D. A.
    McCully, C.
    Valenti, S.
    Dimitriadis, G.
    Maguire, K.
    Sullivan, M.
    Smith, K. W.
    Yaron, O.
    Young, D. R.
    Anderson, J. P.
    Della Valle, M.
    Elias-Rosa, N.
    Gal-Yam, A.
    Jerkstrand, A.
    Kankare, E.
    Pastorello, A.
    Sollerman, J.
    Turatto, M.
    Kostrzewa-Rutkowska, Z.
    Kozlowski, S.
    Mroz, P.
    Pawlak, M.
    Pietrukowicz, P.
    Poleski, R.
    Skowron, D.
    Skowron, J.
    Soszynski, I.
    Szymanski, M. K.
    Ulaczyk, K.
    NATURE ASTRONOMY, 2018, 2 (02): : 173 - 173