Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning

被引:3
|
作者
Sahingoz, Ozgur Koray [1 ]
Cekmez, Ugur [2 ]
Buldu, Ali [3 ]
机构
[1] Biruni Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey
[2] Chooch Intelligence Technol Co, San Mateo, CA 94401 USA
[3] Marmara Univ, Fac Technol, Dept Comp Engn, Istanbul, Turkey
来源
JOURNAL OF WEB ENGINEERING | 2021年 / 20卷 / 06期
关键词
Convolutional neural networks; deep learning; imbalanced datasets; Internet of Things; IoTs; web security;
D O I
10.13052/jwe1540-9589.2062
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the development of sensor and communication technologies, the use of connected devices in industrial applications has been common for a long time. Reduction of costs during this period and the definition of Internet of Things (IoTs) concept have expanded the application area of small connected devices to the level of end-users. This paved the way for IoT technology to provide a wide variety of application alternative and become a part of daily life. Therefore, a poorly protected IoT network is not sustainable and has a negative effect on not only devices but also the users of the system. In this case, protection mechanisms which use conventional intrusion detection approaches become inadequate. As the intruders' level of expertise increases, identification and prevention of new kinds of attacks are becoming more challenging. Thus, intelligent algorithms, which are capable of learning from the natural flow of data, are necessary to overcome possible security breaches. Many studies suggesting models on individual attack types have been successful up to a point in recent literature. However, it is seen that most of the studies aiming to detect multiple attack types cannot successfully detect all of these attacks with a single model. In this study, it is aimed to suggest an all-in-one intrusion detection mechanism for detecting multiple intrusive behaviors and given network attacks. For this aim, a custom deep neural network is designed and implemented to classify a number of different types of network attacks in IoT systems with high accuracy and F-1-score. As a test-bed for comparable results, one of the up-to-date dataset (CICIDS2017), which is highly imbalanced, is used and the reached results are compared with the recent literature. While the initial propose was successful for most of the classes in the dataset, it was noted that achievement was low in classes with a small number of samples. To overcome imbalanced data problem, we proposed a number of augmentation techniques and compared all the results. Experimental results showed that the proposed methods yield highest efficiency among observed literature.
引用
收藏
页码:1721 / 1760
页数:40
相关论文
共 50 条
  • [21] Intrusion Detection System for Industrial Internet of Things Based on Deep Reinforcement Learning
    Tharewal, Sumegh
    Ashfaque, Mohammed Waseem
    Banu, Sayyada Sara
    Uma, Perumal
    Hassen, Samar Mansour
    Shabaz, Mohammad
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [22] Towards a deep learning-driven intrusion detection approach for Internet of Things
    Ge, Mengmeng
    Syed, Naeem Firdous
    Fu, Xiping
    Baig, Zubair
    Robles-Kelly, Antonio
    COMPUTER NETWORKS, 2021, 186
  • [23] Federated Deep Learning for Intrusion Detection in Consumer-Centric Internet of Things
    Popoola, Segun I.
    Imoize, Agbotiname Lucky
    Hammoudeh, Mohammad
    Adebisi, Bamidele
    Jogunola, Olamide
    Aibinu, Abiodun M.
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1610 - 1622
  • [24] Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things' Devices Security
    Alotaibi, Yazeed
    Ilyas, Mohammad
    SENSORS, 2023, 23 (12)
  • [25] Advancements in Intrusion Detection Systems for Internet of Things Using Machine Learning
    Ul Haq, Shahid
    Abbas, Ash Mohammad
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [26] Machine learning based intrusion detection framework for detecting security attacks in internet of things
    Kantharaju, V.
    Suresh, H.
    Niranjanamurthy, M.
    Ansarullah, Syed Immamul
    Amin, Farhan
    Alabrah, Amerah
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Machine and Deep Learning Solutions for Intrusion Detection and Prevention in IoTs: A Survey
    Jayalaxmi, P. L. S.
    Saha, Rahul
    Kumar, Gulshan
    Conti, Mauro
    Kim, Tai-Hoon
    IEEE ACCESS, 2022, 10 : 121173 - 121192
  • [28] An Intrusion Detection and Identification System for Internet of Things Networks Using a Hybrid Ensemble Deep Learning Framework
    Kongsorot, Yanika
    Musikawan, Pakarat
    Aimtongkham, Phet
    You, Ilsun
    Benslimane, Abderrahim
    So-In, Chakchai
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 596 - 613
  • [29] Intrusion detection in internet of things-based smart farming using hybrid deep learning framework
    Kethineni, Keerthi
    Pradeepini, G.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (02): : 1719 - 1732
  • [30] Intrusion detection in internet of things-based smart farming using hybrid deep learning framework
    Keerthi Kethineni
    G. Pradeepini
    Cluster Computing, 2024, 27 : 1719 - 1732