A Proposal for Loss Engineering in Slow-Light Photonic Crystal Waveguides

被引:6
|
作者
Ebnali-Heidari, Aliakbar [1 ]
Prokop, Christoph [2 ]
Ebnali-Heidari, Majid [3 ]
Karnutsch, Christian [2 ]
机构
[1] Farhangian Univ, Tehran 1477893855, Iran
[2] Univ Appl Sci Karlsruhe, Dept Elect Engn & Informat Technol, Inst Optofluid & Nanophoton, D-76133 Karlsruhe, Germany
[3] Shahrekord Univ, Fac Engn, Shahrekord 8818634141, Iran
基金
美国国家科学基金会;
关键词
Optofluidic; photonic crystal waveguide; propagation loss; slow-light; GROUP-VELOCITY; PROPAGATION LOSSES; LOW-DISPERSION; DESIGN; ENHANCEMENT; DEPENDENCE; MODE;
D O I
10.1109/JLT.2015.2391196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors present a loss engineering method for slow-light photonic crystal (PhC) waveguides. Our proposed method for engineering the loss is based on optofluidic techniques to produce low propagation loss in the low dispersions slow-light regime. We numerically demonstrate that this approach allows one to control the propagation loss (from 180 to 120 dB/cm) by selective infiltration of suitable fluids into air holes of a PhC waveguide around the group velocity of c/55 to c/70. It is proposed that fabrication imperfections, i.e., roughness and other deviations from an ideal structure that lead to propagation losses, can be compensated by a selective nanoinfiltration method. A loss of 150 dB/cm for loss-engineered waveguides, compared to 230 dB/cm for conventional waveguides, is numerically demonstrated, while both waveguide structures maintain the same group index-bandwidth product.
引用
收藏
页码:1905 / 1912
页数:8
相关论文
共 50 条
  • [1] Soliton propagation in slow-light photonic crystal waveguides
    Rawal, Swati
    Sinha, R. K.
    PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS V, 2011, 8120
  • [2] Systematic design of slow-light photonic waveguides
    Matzen, Rene
    Jensen, Jakob S.
    Sigmund, Ole
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (10) : 2374 - 2382
  • [3] Enhanced parametric amplification in slow-light photonic crystal waveguides
    LIU Yang & JIANG Chun State Key Laboratory of Advanced Optical Communication Systems and Networks
    Science Bulletin, 2009, (13) : 2221 - 2224
  • [4] Enhanced parametric amplification in slow-light photonic crystal waveguides
    Liu Yang
    Jiang Chun
    CHINESE SCIENCE BULLETIN, 2009, 54 (13): : 2221 - 2224
  • [5] Improvement of delay-bandwidth product in photonic crystal slow-light waveguides
    Hao, Ran
    Cassan, Eric
    Le Roux, Xavier
    Gao, Dingshan
    Do Khanh, Van
    Vivien, Laurent
    Marris-Morini, Delphine
    Zhang, Xinliang
    OPTICS EXPRESS, 2010, 18 (16): : 16309 - 16319
  • [6] Slow light in Slot Photonic Crystal Waveguides by Dispersion Engineering
    Caer, Charles
    Le Roux, Xavier
    Marris-Morini, Delphine
    Vivien, Laurent
    Cassan, Eric
    PHOTONIC CRYSTAL MATERIALS AND DEVICES X, 2012, 8425
  • [7] Scaling of Raman amplification in realistic slow-light photonic crystal waveguides
    Rey, Isabella H.
    Lefevre, Yannick
    Schulz, Sebastian A.
    Vermeulen, Nathalie
    Krauss, Thomas F.
    PHYSICAL REVIEW B, 2011, 84 (03)
  • [8] Observation of four-wave mixing in slow-light silicon photonic crystal waveguides
    McMillan, James F.
    Yu, Mingbin
    Kwong, Dim-Lee
    Wong, Chee Wei
    OPTICS EXPRESS, 2010, 18 (15): : 15484 - 15497
  • [9] Slow-Light Enhanced Second Harmonic Generation in Lithium Niobate Photonic Crystal Waveguides
    Gharsallah, Zaineb
    Sana, Makni
    Najjar, Monia
    Janyani, Vijay
    OPTICAL AND WIRELESS TECHNOLOGIES, OWT 2017, 2018, 472 : 295 - 300
  • [10] Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides
    Oskooi, Ardavan
    Mutapcic, Almir
    Noda, Susumu
    Joannopoulos, J. D.
    Boyd, Stephen P.
    Johnson, Steven G.
    OPTICS EXPRESS, 2012, 20 (19): : 21558 - 21575