Generation of Realistic Boundary Conditions at the Combustion Chamber/Turbine Interface Using Large-Eddy Simulation

被引:8
|
作者
Martin, Benjamin [1 ]
Duchaine, Florent [1 ]
Gicquel, Laurent [1 ]
Odier, Nicolas [1 ]
机构
[1] Ctr Europeen Rech & Format Avancee Calcul Sci, CFD Team, F-31100 Toulouse, France
关键词
turbomachine; large-eddy simulation; unsteady flows; combustion chamber; turbine coupling; realistic boundary conditions;
D O I
10.3390/en14248206
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Numerical simulation of multiple components in turbomachinery applications is very CPU-demanding but remains necessary in the majority of cases to capture the proper coupling and a reliable flow prediction. During a design phase, the cost of simulation is, however, an important criterion which often defines the numerical methods to be used. In this context, the use of realistic boundary conditions capable of accurately reproducing the coupling between components is of great interest. With this in mind, this paper presents a method able to generate more realistic boundary conditions for isolated turbine large-eddy simulation (LES) while exploiting an available integrated combustion chamber/turbine LES. The unsteady boundary conditions to be used at the inflow of the isolated turbine LES are built from the modal decomposition of the database recorded at the interface between the two components of the integrated LES simulation. Given the reference LES database, the reconstructed field boundary conditions can then be compared to standard boundary conditions in the case of isolated turbine configuration flow predictions to illustrate the impact. The results demonstrate the capacity of this type of conditions to reproduce the coupling between the combustion chamber and the turbine when standard conditions cannot. The aerothermal predictions of the blade are, in particular, very satisfactory, which constitutes an important criterion for the adoption of such a method during a design phase.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Large-eddy simulation of MILD combustion using partially stirred reactor approach
    Lu, Hao
    Zou, Chun
    Shao, Shujing
    Yao, Hong
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (04) : 4507 - 4518
  • [22] Large-eddy Simulation of Ethanol Spray Combustion Using a Finite-rate Combustion Model
    Li, K.
    Zhou, L. X.
    Chan, C. K.
    CLEANER COMBUSTION AND SUSTAINABLE WORLD, 2012, : 87 - 90
  • [23] Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow
    W. Cabot
    P. Moin
    Flow, Turbulence and Combustion, 2000, 63 : 269 - 291
  • [24] Approximate wall boundary conditions in the large-eddy simulation of high reynolds number flow
    Cabot, W
    Moin, P
    FLOW TURBULENCE AND COMBUSTION, 2000, 63 (1-4) : 269 - 291
  • [25] Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations
    Yu-Ting Wu
    Fernando Porté-Agel
    Boundary-Layer Meteorology, 2011, 138 : 345 - 366
  • [26] Large-eddy simulation of unsteady turbine rim sealing flows
    Gao, Feng
    Chew, John W.
    Beard, Paul F.
    Amirante, Dario
    Hills, Nicholas J.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2018, 70 : 160 - 170
  • [27] Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain
    Li, Yunliang
    Li, Zhaobin
    Zhou, Zhideng
    Yang, Xiaolei
    SUSTAINABILITY, 2023, 15 (06)
  • [28] Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations
    Wu, Yu-Ting
    Porte-Agel, Fernando
    BOUNDARY-LAYER METEOROLOGY, 2011, 138 (03) : 345 - 366
  • [29] Recent Advances in Large-Eddy Simulation of Spray and Coal Combustion
    Zhou, L. X.
    7TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2013, 1547 : 630 - 639
  • [30] Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes
    Li, Zhaobin
    Liu, Xiaohao
    Yang, Xiaolei
    ENERGIES, 2022, 15 (18)