Frequency response analysis of Shape Memory Alloy actuators

被引:11
作者
Teh, Yee H. [1 ]
Featherstone, Roy [1 ]
机构
[1] Australian Natl Univ, Dept Informat Engn, RSISE, Canberra, ACT 0200, Australia
来源
INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, PTS 1-3 | 2007年 / 6423卷
关键词
Shape Memory Alloys; actuators; frequency response analysis; force feedback control;
D O I
10.1117/12.779881
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a frequency response analysis of nickel-titanium Shape Memory Alloy (SMA) wires that are the active elements in an SMA actuator. Frequency response analysis is the measurement of the relative magnitude and phase of an output signal, with respect to an input signal, at spot frequencies covering a frequency range of interest. In this case, the input signal is the electrical heating power applied to the SMA wire, the output is the tensile force on the wire, and the frequency range is 0.1 Hz to 100Hz. The purpose of such measurements is to obtain a transfer function, relating power input to force output, that can be used to design a feedback control system for a precision SMA force actuator. Measurements are presented for wires having diameters of 75, 100 and 125 mu m, in ambient air at room temperature, under various combinations of stress and strain. It is shown that the phase response is independent of stress and strain, while the magnitude response varies by about 7 dB.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Micropositioning control of smart shape-memory alloy-based actuators
    Asua, E.
    Etxebarria, V.
    Garcia, A.
    Feuchtwange, J.
    ASSEMBLY AUTOMATION, 2009, 29 (03) : 272 - 278
  • [42] Structural fatigue and fracture of shape memory alloy actuators: Current status and perspectives
    Hasan, Md Mehedi
    Baxevanis, Theocharis
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2022, 33 (12) : 1475 - 1486
  • [43] An accurate dynamic model for polycrystalline shape memory alloy wire actuators and sensors
    Rizzello, G.
    Mandolino, M. A.
    Schmidt, M.
    Naso, D.
    Seelecke, S.
    SMART MATERIALS AND STRUCTURES, 2019, 28 (02)
  • [44] Modeling and analysis of laminated shape memory alloy composite plates
    Abbas, Mohamed Kassem
    Elshafei, Mostafa Adnan
    Negm, Hany Mohamed
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2016, 29 (01) : 103 - 142
  • [45] A comparative analysis of different shape memory alloy actuator configurations
    Monteiro, Paulo Cesar C.
    da Silva Monteiro, Luciana Loureiro
    Savi, Marcelo A.
    Netto, Theodoro Antoun
    Pacheco, Pedro M. C. L.
    de Paiva, Tamara
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (11) : 1415 - 1427
  • [46] Engineering Aspects of Shape Memory Film Actuators and Sensors
    Kohl, M.
    Krevet, B.
    Grund, T.
    Barth, J.
    Auernhammer, D.
    Khelfaoui, F.
    STATE-OF-THE-ART RESEARCH AND APPLICATION OF SMAS TECHNOLOGIES, 2009, 59 : 119 - +
  • [47] Finite element analysis on shape memory effect of shape memory alloy devices
    Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
    Nihon Kikai Gakkai Ronbunshu A, 2009, 753 (543-549): : 543 - 549
  • [48] Evaluation of Shape Memory Alloy Bulk Actuators for Wear Compensation in Ball Screw Drives
    Drossel, Welf-Guntram
    Junker, Tom
    Bucht, Andre
    Navarro y de Sosa, Inaki
    Pagel, Kenny
    IFAC PAPERSONLINE, 2016, 49 (21): : 88 - 94
  • [49] Sensitivity analysis of shape memory alloy shells
    Langelaar, Matthijs
    van Keulen, Fred
    COMPUTERS & STRUCTURES, 2008, 86 (09) : 964 - 976
  • [50] Shape memory alloy torsional actuators: a review of applications, experimental investigations, modeling, and design
    Stroud, H.
    Hartl, D.
    SMART MATERIALS AND STRUCTURES, 2020, 29 (11)