Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces

被引:1
|
作者
Calzada, J. A. [1 ]
Kuru, S. [2 ]
Negro, J. [3 ]
del Olmo, M. A. [3 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada, EII, E-47011 Valladolid, Spain
[2] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Ankara, Turkey
[3] Univ Valladolid, Dept Fis Teor Atom & Opt, E-47011 Valladolid, Spain
关键词
Integrable systems; Intertwining operators; ISOSPECTRAL POTENTIALS; WINTERNITZ SYSTEM; HYPERBOLIC PLANE; DIMENSIONS; SPHERE; OSCILLATOR;
D O I
10.1007/s10773-010-0572-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of quantum superintegrable Hamiltonians defined on a hypersurface in a n+1 dimensional ambient space with signature (p,q) is considered and a set of intertwining operators connecting them are determined. It is shown that the intertwining operators can be chosen such that they generate the su(p,q) and so(2p,2q) Lie algebras and lead to the Hamiltonians through Casimir operators. The physical states corresponding to the discrete spectrum of bound states as well as the degeneration are characterized in terms of some particular unitary representations.
引用
收藏
页码:2067 / 2073
页数:7
相关论文
共 41 条
  • [21] Variational property of periodic Kepler orbits in constant curvature spaces
    Deng, Yanxia
    Diacu, Florin
    Zhu, Shuqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) : 5851 - 5869
  • [22] Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems
    Contreras-Astorga, A.
    Negro, J.
    Tristao, S.
    PHYSICS LETTERS A, 2016, 380 (1-2) : 48 - 55
  • [23] Polynomial algebras of superintegrable systems separating in Cartesian coordinates from higher order ladder operators
    Latini, Danilo
    Marquette, Ian
    Zhang, Yao-Zhong
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [24] The isodiametric problem and other inequalities in the constant curvature 2-spaces
    Hernandez Cifre, Maria A.
    Martinez Fernandez, Antonio R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 315 - 325
  • [25] Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature
    Jose Herranz, Francisco
    Ballesteros, Angel
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [26] Algebraic approach and exact solutions of superintegrable systems in 2D Darboux spaces
    Marquette, Ian
    Zhang, Junze
    Zhang, Yao-Zhong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (35)
  • [27] Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability
    Borisov, Alexey V.
    Mamaev, Ivan S.
    Bizyaev, Ivan A.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05) : 613 - 636
  • [28] Quantum, classical symmetries, and action-angle variables by factorization of superintegrable systems
    Kuru, Sengul
    Negro, Javier
    Salamanca, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10)
  • [29] Symmetry algebras of Lagrangian Liouville-type systems
    Kiselev, A. V.
    van de Leur, J. W.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (02) : 149 - 162
  • [30] Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    ANNALS OF PHYSICS, 2011, 326 (08) : 2053 - 2073