Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces

被引:1
|
作者
Calzada, J. A. [1 ]
Kuru, S. [2 ]
Negro, J. [3 ]
del Olmo, M. A. [3 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada, EII, E-47011 Valladolid, Spain
[2] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Ankara, Turkey
[3] Univ Valladolid, Dept Fis Teor Atom & Opt, E-47011 Valladolid, Spain
关键词
Integrable systems; Intertwining operators; ISOSPECTRAL POTENTIALS; WINTERNITZ SYSTEM; HYPERBOLIC PLANE; DIMENSIONS; SPHERE; OSCILLATOR;
D O I
10.1007/s10773-010-0572-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of quantum superintegrable Hamiltonians defined on a hypersurface in a n+1 dimensional ambient space with signature (p,q) is considered and a set of intertwining operators connecting them are determined. It is shown that the intertwining operators can be chosen such that they generate the su(p,q) and so(2p,2q) Lie algebras and lead to the Hamiltonians through Casimir operators. The physical states corresponding to the discrete spectrum of bound states as well as the degeneration are characterized in terms of some particular unitary representations.
引用
收藏
页码:2067 / 2073
页数:7
相关论文
共 41 条
  • [1] Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces
    J. A. Calzada
    Ş. Kuru
    J. Negro
    M. A. del Olmo
    International Journal of Theoretical Physics, 2011, 50 : 2067 - 2073
  • [2] Intertwining Symmetry Algebras of Quantum Superintegrable Systems
    Calzada, Juan A.
    Negro, Javier
    Del Olmo, Mariano A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [3] Intertwining algebras of quantum superintegrable systems on the hyperboloid
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    del Olmo, M. A.
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [4] Superintegrable systems on spaces of constant curvature
    Gonera, Cezary
    Kaszubska, Magdalena
    ANNALS OF PHYSICS, 2014, 346 : 91 - 102
  • [5] More on Superintegrable Models on Spaces of Constant Curvature
    Cezary Gonera
    Joanna Gonera
    Javier de Lucas
    Wioletta Szczesek
    Bartosz M. Zawora
    Regular and Chaotic Dynamics, 2022, 27 : 561 - 571
  • [6] More on Superintegrable Models on Spaces of Constant Curvature
    Gonera, Cezary
    Gonera, Joanna
    de Lucas, Javier
    Szczesek, Wioletta
    Zawora, Bartosz M.
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (05) : 561 - 571
  • [7] Structure relations for the symmetry algebras of quantum superintegrable systems
    Kalnins, E. G.
    Kress, J. M.
    Miller, W., Jr.
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [8] Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
    Ragnisco, Orlando
    Ballesteros, Angel
    Herranz, Francisco J.
    Musso, Fabio
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [9] Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stackel Transform
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [10] Two-dimensional Krall-Sheffer polynomials and quantum systems on spaces with constant curvature
    Vinet, L
    Zhedanov, A
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 65 (02) : 83 - 94