An Adaptive Sparse Subspace Clustering for Cell Type Identification

被引:24
作者
Zheng, Ruiqing [1 ]
Liang, Zhenlan [1 ]
Chen, Xiang [1 ]
Tian, Yu [1 ]
Cao, Chen [2 ,3 ]
Li, Min [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[2] Univ Calgary, Alberta Childrens Hosp Res Inst, Dept Biochem & Mol Biol, Calgary, AB, Canada
[3] Univ Calgary, Alberta Childrens Hosp Res Inst, Dept Med Genet, Calgary, AB, Canada
基金
中国国家自然科学基金;
关键词
single cell RNA-seq; subspace clustering; adaptive sparse strategy; similarity learning; visualization; CLASSIFICATION;
D O I
10.3389/fgene.2020.00407
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid development of single-cell transcriptome sequencing technology has provided us with a cell-level perspective to study biological problems. Identification of cell types is one of the fundamental issues in computational analysis of single-cell data. Due to the large amount of noise from single-cell technologies and high dimension of expression profiles, traditional clustering methods are not so applicable to solve it. To address the problem, we have designed an adaptive sparse subspace clustering method, called AdaptiveSSC, to identify cell types. AdaptiveSSC is based on the assumption that the expression of cells with the same type lies in the same subspace; one cell can be expressed as a linear combination of the other cells. Moreover, it uses a data-driven adaptive sparse constraint to construct the similarity matrix. The comparison results of 10 scRNA-seq datasets show that AdaptiveSSC outperforms original subspace clustering and other state-of-art methods in most cases. Moreover, the learned similarity matrix can also be integrated with a modified t-SNE to obtain an improved visualization result.
引用
收藏
页数:8
相关论文
共 40 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[3]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[6]   ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion [J].
Chen, Qingfeng ;
Lai, Dehuan ;
Lan, Wei ;
Wu, Ximin ;
Chen, Baoshan ;
Liu, Jin ;
Chen, Yi-Ping Phoebe ;
Wang, Jianxin .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (03) :1106-1112
[7]   A survey of human brain transcriptome diversity at the single cell level [J].
Darmanis, Spyros ;
Sloan, Steven A. ;
Zhang, Ye ;
Enge, Martin ;
Caneda, Christine ;
Shuer, Lawrence M. ;
Gephart, Melanie G. Hayden ;
Barres, Ben A. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) :7285-7290
[8]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[9]   Innate-like functions of natural killer T cell subsets result from highly divergent gene programs [J].
Engel, Isaac ;
Seumois, Gregory ;
Chavez, Lukas ;
Samaniego-Castruita, Daniela ;
White, Brandie ;
Chawla, Ashu ;
Mock, Dennis ;
Vijayanand, Pandurangan ;
Kronenberg, Mitchell .
NATURE IMMUNOLOGY, 2016, 17 (06) :728-+
[10]   Single cell clustering based on cell-pair differentiability correlation and variance analysis [J].
Jiang, Hao ;
Sohn, Lydia L. ;
Huan, Haiyan ;
Chen, Luonan .
BIOINFORMATICS, 2018, 34 (21) :3684-3694