State-space multitaper time-frequency analysis

被引:32
作者
Kim, Seong-Eun [1 ,2 ]
Behr, Michael K. [3 ]
Ba, Demba [4 ]
Brown, Emery N. [1 ,3 ,5 ,6 ]
机构
[1] MIT, Picower Inst Learning & Memory, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hanbat Natl Univ, Dept Elect & Control Engn, Daejeon 34158, South Korea
[3] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[6] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会;
关键词
nonparametric spectral analysis; spectral representation theorem; complex Kalman filter; statistical inference; big data; NONSTATIONARY; DECOMPOSITION; LIKELIHOOD; ENSEMBLE; SPECTRUM; EEG;
D O I
10.1073/pnas.1702877115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Time series are an important data class that includes recordings ranging from radio emissions, seismic activity, global positioning data, and stock prices to EEG measurements, vital signs, and voice recordings. Rapid growth in sensor and recording technologies is increasing the production of time series data and the importance of rapid, accurate analyses. Time series data are commonly analyzed using time-varying spectral methods to characterize their nonstationary and often oscillatory structure. Current methods provide local estimates of data features. However, they do not offer a statistical inference framework that applies to the entire time series. The important advances that we report are state-space multitaper (SS-MT) methods, which provide a statistical inference framework for time-varying spectral analysis of nonstationary time series. We model nonstationary time series as a sequence of second-order stationary Gaussian processes defined on nonoverlapping intervals. We use a frequency-domain random-walk model to relate the spectral representations of the Gaussian processes across intervals. The SS-MT algorithm efficiently computes spectral updates using parallel 1D complex Kalman filters. An expectation-maximization algorithm computes static and dynamic model parameter estimates. We test the framework in time-varying spectral analyses of simulated time series and EEG recordings from patients receiving general anesthesia. Relative to standard multitaper (MT), SS-MT gave enhanced spectral resolution and noise reduction (> 10 dB) and allowed statistical comparisons of spectral properties among arbitrary time series segments. SS-MT also extracts time-domain estimates of signal components. The SS-MT paradigm is a broadly applicable, empirical Bayes' framework for statistical inference that can help ensure accurate, reproducible findings from nonstationary time series analyses.
引用
收藏
页码:E5 / E14
页数:10
相关论文
共 43 条
[31]   Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis [J].
Prerau, Michael J. ;
Brown, Ritchie E. ;
Bianchi, Matt T. ;
Ellenbogen, Jeffrey M. ;
Purdon, Patrick L. .
PHYSIOLOGY, 2017, 32 (01) :60-92
[32]  
Priestley M. B., 1981, Spectral Analysis and Time Series. Probability and Mathematical Statistics: A Series of Monographs and Texbooks
[33]   Clinical Electroencephalography for Anesthesiologists Part I: Background and Basic Signatures [J].
Purdon, Patrick L. ;
Sampson, Aaron ;
Pavone, Kara J. ;
Brown, Emery N. .
ANESTHESIOLOGY, 2015, 123 (04) :937-960
[34]   Electroencephalogram signatures of loss and recovery of consciousness from propofol [J].
Purdon, Patrick L. ;
Pierce, Eric T. ;
Mukamel, Eran A. ;
Prerau, Michael J. ;
Walsh, John L. ;
Wong, Kin Foon K. ;
Salazar-Gomez, Andres F. ;
Harrell, Priscilla G. ;
Sampson, Aaron L. ;
Cimenser, Aylin ;
Ching, ShiNung ;
Kopell, Nancy J. ;
Tavares-Stoeckel, Casie ;
Habeeb, Kathleen ;
Merhar, Rebecca ;
Brown, Emery N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (12) :E1142-E1151
[35]  
Qi Y, 2002, INT CONF ACOUST SPEE, P1473
[36]  
Quatieri T. F., 2008, Discrete-Time Speech Signal Processing: Principles and Practice
[37]  
Shumway R. H., 1982, Journal of Time Series Analysis, V3, P253, DOI 10.1111/j.1467-9892.1982.tb00349.x
[38]  
Shumway R. H., 2011, TIME SERIES ANAL ITS, V3rd
[39]   Estimating a state-space model from point process observations [J].
Smith, AC ;
Brown, EN .
NEURAL COMPUTATION, 2003, 15 (05) :965-991
[40]   Estimation of nonstationary EEG with Kalman smoother approach: An application to event-related synchronization (ERS) [J].
Tarvainen, MP ;
Hilturien, JK ;
Ranta-Aho, PO ;
Karjalainen, PA .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (03) :516-524