Unsupervised color image segmentation using mean shift and deterministic annealing EM

被引:0
|
作者
Cho, WH [1 ]
Park, J
Lee, M
Park, S
机构
[1] Chonnam Natl Univ, Dept Stat, Chungnam, South Korea
[2] Univ So Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90089 USA
[3] Mokpo Natl Univ, Dept Elect Engn, Chungnam, South Korea
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS | 2005年 / 3483卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an unsupervised segmentation algorithm combining the mean shift procedure and deterministic annealing expectation maximization (DAEM) called MS-DAEM algorithm. We use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model (GMM) to represent the probability distribution of color feature vectors. A DAEM formula is used to estimate the parameters of the GMM which represents the multi-colored objects statistically. The experimental results show that the mean shift part of the proposed MS-DAEM algorithm is efficient to determine the number of components and initial modes of each component in mixture models. And also it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model and the natural color images are segmented efficiently by using the GMM with components estimated by MS-DAEM algorithm.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 50 条
  • [41] A new color image segmentation algorithm based on mean shift and affinity propagation
    Xu, X. (lgxuxiaoli@yahoo.com.cn), 1925, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (06):
  • [42] A new color image segmentation algorithm combining mean shift and hierarchical clustering
    Xu, Xiaoli
    Zhao, Mingtao
    Sun, Lu
    Yang, Dongxia
    Liu, Hong
    Zhao, M. (zmt.stat@gmail.com), 1600, Binary Information Press (10): : 1519 - 1525
  • [43] Medical image segmentation using mean field annealing network
    Lin, JS
    Chen, RM
    Huang, YM
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 855 - 858
  • [44] Image segmentation with hierarchical mean shift
    Tang, Yang
    Pan, Zhigeng
    Tang, Min
    Heng, Pheng Ann
    Xia, Deshen
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2009, 46 (09): : 1424 - 1431
  • [45] BAYESIAN IMAGE SEGMENTATION WITH MEAN SHIFT
    Zhou, Huiyu
    Schaefer, Gerald
    Celebi, M. Emre
    Fei, Minrui
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2405 - +
  • [46] Colour image segmentation using adaptive mean shift filters
    Gu, IYH
    Gui, V
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 726 - 729
  • [47] Remote Sensing Image Segmentation Using Mean Shift Method
    Wan, Fang
    Deng, Fei
    ADVANCED RESEARCH ON COMPUTER EDUCATION, SIMULATION AND MODELING, PT II, 2011, 176 (02): : 86 - +
  • [48] Single-click image segmentation using mean shift
    Bozdog, Dragos
    Florescu, Ionut
    Stolkin, Rustam
    PERCEPTION, 2009, 38 (04) : 625 - 626
  • [49] Convergence of the Mean Shift Using the Infinity Norm in Image Segmentation
    Dominguez, Didier
    Rodriguez, Roberto
    JOURNAL OF PATTERN RECOGNITION RESEARCH, 2011, 6 (01): : 32 - 42
  • [50] Unsupervised image segmentation using a mean field decomposition of a posteriori probability
    Noda, H
    Shirazi, MN
    Zhang, B
    Kawaguchi, E
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 966 - 973