Sums of five almost equal prime squares

被引:9
|
作者
Bauer, C [1 ]
机构
[1] Dolby Labs, San Francisco, CA 94103 USA
关键词
prime numbers; exponential sums; L-functions;
D O I
10.1007/s10114-004-0506-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P-i, 1 <= i <= 5, be prime numbers. It is proved that every integer N that satisfies N (mod 24) can be written as N = P-1(2) + P-1(2) + P-1(2) + p(4)(2) + P-5(2), where vertical bar root N5 - p(i)vertical bar <= N1/2 - 19/850 + epsilon.
引用
收藏
页码:833 / 840
页数:8
相关论文
共 43 条
  • [21] Interpolation by generalized exponential sums with equal weights
    Chunaev, Petr
    JOURNAL OF APPROXIMATION THEORY, 2020, 254
  • [22] Almost prime triples and Chen's theorem
    Heath-Brown, Roger
    Li, Xiannan
    JOURNAL OF NUMBER THEORY, 2016, 169 : 265 - 294
  • [23] The three primes theorem with almost equal summands
    Baker, RC
    Harman, G
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1738): : 763 - 780
  • [24] TWISTED MONOMIAL GAUSS SUMS MODULO PRIME POWERS
    Pigno, Vincent
    Pinner, Christopher
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 285 - 301
  • [25] IRREDUCIBILITY CRITERIA FOR SUMS OF TWO RELATIVELY PRIME POLYNOMIALS
    Bonciocat, Nicolae Ciprian
    Bugeaud, Yann
    Cipu, Mihai
    Mignotte, Maurice
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1529 - 1539
  • [26] The New Primer on Prime Numbers: Sums of Second Derivatives
    Hibbs, Ernest G.
    PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS: RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, : 146 - +
  • [27] On sums of three integers with a fixed number of prime factors
    Meng, XM
    JOURNAL OF NUMBER THEORY, 2005, 114 (01) : 37 - 65
  • [28] Exponential sums involving the largest prime factor function
    De Koninck, Jean-Marie
    Katai, Imre
    ACTA ARITHMETICA, 2011, 146 (03) : 233 - 245
  • [29] Exponential sums of squares of Fourier coefficients of cusp forms
    Ratnadeep Acharya
    Proceedings - Mathematical Sciences, 2020, 130
  • [30] Exponential sums of squares of Fourier coefficients of cusp forms
    Acharya, Ratnadeep
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):