Sums of five almost equal prime squares

被引:9
|
作者
Bauer, C [1 ]
机构
[1] Dolby Labs, San Francisco, CA 94103 USA
关键词
prime numbers; exponential sums; L-functions;
D O I
10.1007/s10114-004-0506-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P-i, 1 <= i <= 5, be prime numbers. It is proved that every integer N that satisfies N (mod 24) can be written as N = P-1(2) + P-1(2) + P-1(2) + p(4)(2) + P-5(2), where vertical bar root N5 - p(i)vertical bar <= N1/2 - 19/850 + epsilon.
引用
收藏
页码:833 / 840
页数:8
相关论文
共 43 条
  • [1] Sums of Five Almost Equal Prime Squares
    Claus BAUER
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (04) : 833 - 840
  • [2] Sums of Five Almost Equal Prime Squares
    Claus Bauer
    Acta Mathematica Sinica, 2005, 21 : 833 - 840
  • [3] SUMS OF ALMOST EQUAL PRIME SQUARES
    Li, Hongze
    Wu, Jie
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 38 (01) : 49 - 65
  • [4] Sums of almost equal squares of primes
    Kumchev, Angel
    Li, Taiyu
    JOURNAL OF NUMBER THEORY, 2012, 132 (04) : 608 - 636
  • [5] Hua's theorem on sums of five prime squares in arithmetic progressions
    Bauer, Claus
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (01) : 29 - 66
  • [6] The structure of prime sums
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (04) : 86 - 91
  • [7] On some exponential sums over prime numbers
    Fouvry, E
    Michel, P
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (01): : 93 - 130
  • [8] On sums of squares of primes II
    Harman, Glyn
    Kumchev, Angel
    JOURNAL OF NUMBER THEORY, 2010, 130 (09) : 1969 - 2002
  • [9] On Dirichlet series for sums of squares
    Borwein, JM
    Choi, KKS
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 95 - 127
  • [10] Exponential sums modulo prime powers
    Cochrane, T
    ACTA ARITHMETICA, 2002, 101 (02) : 131 - 149