Multi-view longitudinal CNN for multiple sclerosis lesion segmentation

被引:58
|
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
关键词
Multiple Sclerosis; Longitudinal; CNN; Segmentation; BRAIN; REGISTRATION; IMAGES; ROBUST;
D O I
10.1016/j.engappai.2017.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [41] A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis
    Cerri, Stefano
    Puonti, Oula
    Meier, Dominik S.
    Wuerfel, Jens
    Muhlau, Mark
    Siebner, Hartwig R.
    Van Leemput, Koen
    NEUROIMAGE, 2021, 225
  • [42] Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review
    Diaz-Hurtado, Marcos
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Casas-Roma, Jordi
    Llufriu, Sara
    Kanber, Baris
    Prados, Ferran
    NEURORADIOLOGY, 2022, 64 (11) : 2103 - 2117
  • [43] Multi-component relaxation in clinically isolated syndrome: Lesion myelination may predict multiple sclerosis conversion
    Kitzler, Hagen H.
    Wahl, Hannes
    Eisele, Judith C.
    Kuhn, Matthias
    Schmitz-Peiffer, Henning
    Kern, Simone
    Rutt, Brian K.
    Deoni, Sean C. L.
    Ziemssen, Tjalf
    Linn, Jennifer
    NEUROIMAGE-CLINICAL, 2018, 20 : 61 - 70
  • [44] Segmentation-based view synthesis for multi-view video plus depth
    Loghman, Maziar
    Kim, Joohee
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (05) : 1611 - 1625
  • [45] Segmentation-based view synthesis for multi-view video plus depth
    Maziar Loghman
    Joohee Kim
    Multimedia Tools and Applications, 2015, 74 : 1611 - 1625
  • [46] On multi-view video segmentation for object-based coding
    Zhu, Zhongjie
    Wang, Yuer
    Jiang, Gangyi
    DIGITAL SIGNAL PROCESSING, 2012, 22 (06) : 954 - 960
  • [47] One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
    Valverde, Sergi
    Salem, Mostafa
    Cabezas, Mariano
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Salvi, Joaquim
    Oliver, Arnau
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2019, 21
  • [48] Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices
    Zhang, Huahong
    Valcarcel, Alessandra M.
    Bakshi, Rohit
    Chu, Renxin
    Bagnato, Francesca
    Shinohara, Russell T.
    Hett, Kilian
    Oguz, Ipek
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 338 - 346
  • [49] Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
    Nair, Tanya
    Precup, Doina
    Arnold, Douglas L.
    Arbel, Tal
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 655 - 663
  • [50] Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation
    Nair, Tanya
    Precup, Doina
    Arnold, Douglas L.
    Arbel, Tal
    MEDICAL IMAGE ANALYSIS, 2020, 59