Multi-view longitudinal CNN for multiple sclerosis lesion segmentation

被引:58
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
关键词
Multiple Sclerosis; Longitudinal; CNN; Segmentation; BRAIN; REGISTRATION; IMAGES; ROBUST;
D O I
10.1016/j.engappai.2017.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 24 条
[1]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[2]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[3]  
Chollet Francois., 2015, Keras
[4]  
Geremia E, 2010, LECT NOTES COMPUT SC, V6361, P111
[5]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[6]  
GUTTMANN CRG, 1995, AM J NEURORADIOL, V16, P1481
[7]  
ISBI, 2015, LONG MS LES SEGM EV
[8]   Improved optimization for the robust and accurate linear registration and motion correction of brain images [J].
Jenkinson, M ;
Bannister, P ;
Brady, M ;
Smith, S .
NEUROIMAGE, 2002, 17 (02) :825-841
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965