Weakly Einstein critical metrics of the volume functional on compact manifolds with boundary

被引:8
|
作者
Baltazar, H. [1 ]
Da Silva, A. [2 ]
Oliveira, F. [3 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
[3] Univ Fed Rural Semi Arido, Dept Ciencias Nat Matemat & Estat DCME, BR-59625900 Mossoro, RN, Brazil
关键词
Volume functional; Critical metrics; Weakly Einstein; SCALAR CURVATURE;
D O I
10.1016/j.jmaa.2020.124013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study weakly Einstein critical metrics of the volume functional on a compact manifold M with smooth boundary partial derivative M. Here, we will give the complete classification for an n-dimensional, n = 3 or 4, weakly Einstein critical metric of the volume functional with nonnegative scalar curvature. Moreover, in the higher dimensional case (n >= 5), we will establish a similar result for weakly Einstein critical metric under a suitable constraint on the Weyl tensor. (C) Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条