Discrepancy-Based Theory and Algorithms for Forecasting Non-Stationary Time Series

被引:20
|
作者
Kuznetsov, Vitaly [1 ]
Mohri, Mehryar [2 ]
机构
[1] Google Res, 76 Ninth Ave, New York, NY 10011 USA
[2] Google Res & Courant Inst, 251 Mercer St, New York, NY 10012 USA
关键词
Time series; Forecasting; Non-stationary; Non-mixing; Generalization bounds; Discrepancy; Expected sequential covering numbers; Sequential Rademacher complexity; CONVERGENCE; PREDICTION; BOUNDS;
D O I
10.1007/s10472-019-09683-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present data-dependent learning bounds for the general scenario of non-stationary non-mixing stochastic processes. Our learning guarantees are expressed in terms of a data-dependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. Our learning bounds guide the design of new algorithms for non-stationary time series forecasting for which we report several favorable experimental results.
引用
收藏
页码:367 / 399
页数:33
相关论文
共 50 条
  • [21] Predictiuo of multi-dimensijnal non-stationary time series using neuromodeling
    Epikhin, Aleksey, I
    Khekert, Evgeniy, V
    Kondratyev, Sergey, I
    MARINE INTELLECTUAL TECHNOLOGIES, 2020, (04): : 23 - 27
  • [22] Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review
    Rhif, Manel
    Ben Abbes, Ali
    Farah, Imed Riadh
    Martinez, Beatriz
    Sang, Yanfang
    APPLIED SCIENCES-BASEL, 2019, 9 (07):
  • [23] Characterizing time-resolved stochasticity in non-stationary time series
    Rahvar, Sepehr
    Reihani, Erfan S.
    Golestani, Amirhossein N.
    Hamounian, Abolfazl
    Aghaei, Fatemeh
    Sahimi, Muhammad
    Manshour, Pouya
    Palus, Milan
    Feudel, Ulrike
    Freund, Jan A.
    Lehnertz, Klaus
    Rings, Thorsten
    Tabar, M. Reza Rahimi
    CHAOS SOLITONS & FRACTALS, 2024, 185
  • [24] A Bayesian nonparametric Markovian model for non-stationary time series
    Maria DeYoreo
    Athanasios Kottas
    Statistics and Computing, 2017, 27 : 1525 - 1538
  • [25] A Bayesian nonparametric Markovian model for non-stationary time series
    DeYoreo, Maria
    Kottas, Athanasios
    STATISTICS AND COMPUTING, 2017, 27 (06) : 1525 - 1538
  • [26] Modelling customer demand for mobile value-added services: non-stationary time series models or neural networks time series analysis?
    Vaghefzadeh M.H.
    Karimi B.
    Ahmadi A.
    International Journal of Industrial and Systems Engineering, 2023, 43 (04) : 555 - 581
  • [27] Comparative Analysis of ARIMA and Artificial Neural Network Techniques for Forecasting Non-Stationary Agricultural Output Time Series
    Awe, Olushina Olawale
    Dias, Ronaldo
    AGRIS ON-LINE PAPERS IN ECONOMICS AND INFORMATICS, 2022, 14 (04) : 3 - 9
  • [28] A Moment Cross Predictor For Non-stationary Mobile Traffic Forecasting
    Ge, Yunfeng
    Zhang, Yingxin
    Shi, Keyi
    Li, Hongyan
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [29] Information Theory for Non-Stationary Processes with Stationary Increments
    Granero-Belinchon, Carlos
    Roux, Stephane G.
    Garnier, Nicolas B.
    ENTROPY, 2019, 21 (12)
  • [30] Principles and algorithms for forecasting groups of time series: Locality and globality
    Montero-Manso, Pablo
    Hyndman, Rob J.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (04) : 1632 - 1653