The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure

被引:5
作者
Liu, Qiao [1 ]
Wang, Pei [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Local in time smooth solution; Blow-up criteria; Anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; ONE VELOCITY COMPONENT; REGULARITY CRITERIA; HARMONIC MAPS; HEAT-FLOW; WELL-POSEDNESS; WEAK SOLUTIONS; R-3;
D O I
10.1016/j.nonrwa.2017.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we concern the 3D nematic liquid crystal equations and prove three almost Serrin-type blow-up criteria for the breakdown of local in time smooth solutions in terms of pressure and gradient of the orientation field. More precisely, let T-*, be the maximal time of the local smooth solution, then T-* < +infinity if and only if integral(T*)(0) parallel to parallel to parallel to P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 2 and 2 <= p, q, r <= infinity,1 - (1/p + 1/q + 1/r) >= 0, and integral(T*)(0) parallel to parallel to parallel to del P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 3 and 1 <= p, q, r <= infinity, 1 - (1/2p + 1/2q + 1/2r) >= 0, and integral(T*)(0) parallel to parallel to partial derivative P-3(center dot, t)parallel to(Lx3 gamma) parallel to(beta)(Lx1 x2 alpha) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/gamma + 2/alpha = k is an element of[2,3) and 3/k <= gamma <= alpha < 1/k-2. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:290 / 306
页数:17
相关论文
共 50 条
  • [31] A blow-up criterion for 3D Boussinesq equations in Besov spaces
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 806 - 815
  • [32] Blow-up criterion for 3D viscous-resistive compressible magnetohydrodynamic equations
    Chen, Mingtao
    Liu, Shengquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (09) : 1145 - 1156
  • [33] Blow-Up Solution of the 3D Viscous Incompressible MHD System
    Yang, Xin-Guang
    Shi, Wei
    Lu, Yongjin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (02): : 109 - 118
  • [34] Blow-up Criteria for the 2D Full Compressible MHD system
    Yuan, Baoquan
    Zhao, Xiaokui
    APPLICABLE ANALYSIS, 2014, 93 (07) : 1339 - 1357
  • [35] SERRIN BLOW-UP CRITERION FOR STRONG SOLUTIONS TO THE 3-D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS WITH VACUUM
    Liu, Qiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [36] BLOW-UP CRITERION OF CLASSICAL SOLUTIONS FOR THE INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    Gao, Zhensheng
    Tan, Zhong
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) : 1632 - 1638
  • [37] Blow-up criteria for the 3D B,nard system in Besov spaces
    Ma, Liangliang
    Zhang, Lei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [38] Blow-up criteria for the 3D Bénard system in Besov spaces
    Liangliang Ma
    Lei Zhang
    Journal of Inequalities and Applications, 2019
  • [39] New blow-up criteria for local solutions of the 3D generalized MHD equations in Lei-Lin-Gevrey spaces
    Melo, Wilberclay G. G.
    Rocha, Nata Firmino
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 757 - 778
  • [40] BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index
    Yuan, Baoquan
    Wei, Chengzhou
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3030 - 3037