The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure

被引:5
|
作者
Liu, Qiao [1 ]
Wang, Pei [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Local in time smooth solution; Blow-up criteria; Anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; ONE VELOCITY COMPONENT; REGULARITY CRITERIA; HARMONIC MAPS; HEAT-FLOW; WELL-POSEDNESS; WEAK SOLUTIONS; R-3;
D O I
10.1016/j.nonrwa.2017.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we concern the 3D nematic liquid crystal equations and prove three almost Serrin-type blow-up criteria for the breakdown of local in time smooth solutions in terms of pressure and gradient of the orientation field. More precisely, let T-*, be the maximal time of the local smooth solution, then T-* < +infinity if and only if integral(T*)(0) parallel to parallel to parallel to P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 2 and 2 <= p, q, r <= infinity,1 - (1/p + 1/q + 1/r) >= 0, and integral(T*)(0) parallel to parallel to parallel to del P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 3 and 1 <= p, q, r <= infinity, 1 - (1/2p + 1/2q + 1/2r) >= 0, and integral(T*)(0) parallel to parallel to partial derivative P-3(center dot, t)parallel to(Lx3 gamma) parallel to(beta)(Lx1 x2 alpha) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/gamma + 2/alpha = k is an element of[2,3) and 3/k <= gamma <= alpha < 1/k-2. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:290 / 306
页数:17
相关论文
共 50 条
  • [21] A BLOW-UP CRITERION FOR 3D COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM
    Xu, Xinying
    Zhang, Jianwen
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (02)
  • [22] On regularity criteria in terms of pressure for the 3D viscous MHD equations
    Duan, Huiling
    APPLICABLE ANALYSIS, 2012, 91 (05) : 947 - 952
  • [23] A BLOW-UP CRITERION FOR THE 3D COMPRESSIBLE MHD EQUATIONS
    Lu, Ming
    Du, Yi
    Yao, Zheng-An
    Zhang, Zujin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1167 - 1183
  • [24] Global solutions to the 3D incompressible nematic liquid crystal system
    Liu, Qiao
    Zhang, Ting
    Zhao, Jihong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) : 1519 - 1547
  • [25] Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows
    Qiao Liu
    Yemei Wei
    Acta Applicandae Mathematicae, 2017, 147 : 63 - 80
  • [26] A Blow-Up Criterion for 3D Nonhomogeneous Incompressible Magnetohydrodynamic Equations with Vacuum
    Wang, Shujuan
    Tian, Miaoqing
    Su, Rijian
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [27] A Blow-Up Criterion for 3D Compressible Isentropic Magnetohydrodynamic Equations with Vacuum
    Wang, Shujuan
    Ren, Jialin
    Su, Rijian
    MATHEMATICS, 2024, 12 (05)
  • [28] A note on regularity criteria in terms of pressure for the 3D viscous MHD equations
    Gala, S.
    Ragusa, M. A.
    MATHEMATICAL NOTES, 2017, 102 (3-4) : 475 - 479
  • [29] Blow-up of the Smooth Solution to the Compressible Nematic Liquid Crystal System
    Wang, Guangwu
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2018, 156 (01) : 211 - 224
  • [30] A blow-up criterion for 3D Boussinesq equations in Besov spaces
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 806 - 815