The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure

被引:5
|
作者
Liu, Qiao [1 ]
Wang, Pei [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Local in time smooth solution; Blow-up criteria; Anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; ONE VELOCITY COMPONENT; REGULARITY CRITERIA; HARMONIC MAPS; HEAT-FLOW; WELL-POSEDNESS; WEAK SOLUTIONS; R-3;
D O I
10.1016/j.nonrwa.2017.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we concern the 3D nematic liquid crystal equations and prove three almost Serrin-type blow-up criteria for the breakdown of local in time smooth solutions in terms of pressure and gradient of the orientation field. More precisely, let T-*, be the maximal time of the local smooth solution, then T-* < +infinity if and only if integral(T*)(0) parallel to parallel to parallel to P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 2 and 2 <= p, q, r <= infinity,1 - (1/p + 1/q + 1/r) >= 0, and integral(T*)(0) parallel to parallel to parallel to del P(center dot, t)parallel to(Lx1p) parallel to(Lx2q) parallel to(beta)(Lx3r) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/p + 1/q + 1/r = 3 and 1 <= p, q, r <= infinity, 1 - (1/2p + 1/2q + 1/2r) >= 0, and integral(T*)(0) parallel to parallel to partial derivative P-3(center dot, t)parallel to(Lx3 gamma) parallel to(beta)(Lx1 x2 alpha) + parallel to del d(center dot, t)parallel to(8)(L4) dt = infinity, with 2/beta + 1/gamma + 2/alpha = k is an element of[2,3) and 3/k <= gamma <= alpha < 1/k-2. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:290 / 306
页数:17
相关论文
共 50 条