Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization

被引:42
|
作者
Wang, Lu [1 ]
Ma, Lei [1 ]
Wang, Chao [2 ]
Xie, Neng-gang [1 ]
Koh, Jin Ming [3 ,4 ]
Cheong, Kang Hao [3 ,5 ]
机构
[1] Anhui Univ Technol, Dept Management Sci & Engn, Maanshan 243002, Peoples R China
[2] Anhui Polytech Univ, Dept Architectural Engn, Wuhu 241000, Peoples R China
[3] Singapore Univ Technol & Design, Sci Math & Technol Cluster, Singapore 487372, Singapore
[4] CALTECH, Pasadena, CA 91125 USA
[5] SUTD Massachusetts Inst Technol, Int Design Ctr, Singapore 487372, Singapore
关键词
Optimization; Social networking (online); Computational modeling; Search problems; Heuristic algorithms; Estimation; Cost accounting; Assessment model; influence maximization; moth-flame optimization (MFO); social networks; WORD-OF-MOUTH; INFLUENCE MAXIMIZATION; EVOLUTIONARY ALGORITHM; NODES; IDENTIFICATION; INTELLIGENCE; PARAMETERS; DIFFUSION; FRAMEWORK; MODELS;
D O I
10.1109/TEVC.2021.3081478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical relevance. Greedy-based methods can provide solutions of reliable accuracy, but the computational cost of the required Monte Carlo simulations renders them infeasible for large networks. Meanwhile, although network structure-based centrality methods can be efficient, they typically achieve poor recognition accuracy. Here, we establish an effective influence assessment model based both on the total valuation and variance in valuation of neighbor nodes, motivated by the possibility of unreliable communication channels. We then develop a discrete moth-flame optimization method to search for influence-maximizing node sets, using a local crossover and mutation evolution scheme atop the canonical moth position updates. To accelerate convergence, a search area selection scheme derived from a degree-based heuristic is used. The experimental results on five real-world social networks, comparing our proposed method against several alternatives in the current literature, indicates our approach to be effective and robust in tackling the influence maximization problem.
引用
收藏
页码:1091 / 1102
页数:12
相关论文
共 50 条
  • [31] Identifying influential spreaders in complex networks by an improved gravity model
    Li, Zhe
    Huang, Xinyu
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [32] SpreadRank: A Novel Approach for Identifying Influential Spreaders in Complex Networks
    Zhu, Xuejin
    Huang, Jie
    ENTROPY, 2023, 25 (04)
  • [33] Identifying top-k influential nodes in social networks: a discrete hybrid optimizer by integrating butterfly optimization algorithm with differential evolution
    Tang, Jianxin
    Zhu, Hongyu
    Han, Lihong
    Song, Shihui
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13) : 19624 - 19668
  • [34] Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective
    Basaras, Pavlos
    Iosifidis, George
    Katsaros, Dimitrios
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (01): : 31 - 45
  • [35] Identifying multiple influential spreaders with local relative weakening effect in complex networks
    Zhang, Yaming
    Su, Yanyuan
    Li Weigang
    Koura, Yaya H.
    EPL, 2018, 124 (02)
  • [36] Identifying influential spreaders by weight degree centrality in complex networks
    Liu, Yang
    Wei, Bo
    Du, Yuxian
    Xiao, Fuyuan
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2016, 86 : 1 - 7
  • [37] Identifying influential spreaders in complex networks based on density entropy and community structure
    Su, Zhan
    Chen, Lei
    Ai, Jun
    Zheng, Yu-Yu
    Bie, Na
    CHINESE PHYSICS B, 2024, 33 (05)
  • [38] Graphical Visualization of the Connections of Involved Users and Identifying Influential Spreaders in a Social Network
    Mussiraliyeva, Shynar
    Baispay, Gulshat
    Ospanov, Ruslan
    Medetbek, Zhanar
    Shalabayev, Kazybek
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 311 - 315
  • [39] Identifying and ranking influential spreaders in complex networks by neighborhood coreness
    Bae, Joonhyun
    Kim, Sangwook
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 395 : 549 - 559
  • [40] AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality
    Yang, Ping-Le
    Zhao, Lai-Jun
    Dong, Chen
    Xu, Gui-Qiong
    Zhou, Li-Xin
    CHINESE PHYSICS B, 2023, 32 (05)