We consider the eigenvalue problem u " + lambda u + p(x)u = 0 in (0, pi), u(0) = u(pi) = 0, where p is an element of L-1(0, pi) keeps a fixed sign and \\p\\(L1) > 0, and we obtain some lower and upper bounds for \\p\\(L1) in terms of its nonnegative eigenvalues lambda. Two typical results are: (1) \\p\\(L1) > root lambda\sin root lambda\ if lambda > 1 and is not the square of a positive integer; (2) \\p\\(L1) less than or equal to 16/pi if lambda = 0 is the smallest eigenvalue.
机构:
Namik Kemal Univ, Fac Arts & Sci, Dept Math, TR-59030 Tekirdag, Turkey
Istanbul Tech Univ, Dept Engn Math, TR-34469 Istanbul, TurkeyNamik Kemal Univ, Fac Arts & Sci, Dept Math, TR-59030 Tekirdag, Turkey
Sen, Erdogan
Seo, Jong Jin
论文数: 0引用数: 0
h-index: 0
机构:
Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South KoreaNamik Kemal Univ, Fac Arts & Sci, Dept Math, TR-59030 Tekirdag, Turkey