Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type

被引:9
|
作者
Ha, CW [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Hsinchu, Taiwan
关键词
D O I
10.1090/S0002-9939-98-05010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem u " + lambda u + p(x)u = 0 in (0, pi), u(0) = u(pi) = 0, where p is an element of L-1(0, pi) keeps a fixed sign and \\p\\(L1) > 0, and we obtain some lower and upper bounds for \\p\\(L1) in terms of its nonnegative eigenvalues lambda. Two typical results are: (1) \\p\\(L1) > root lambda\sin root lambda\ if lambda > 1 and is not the square of a positive integer; (2) \\p\\(L1) less than or equal to 16/pi if lambda = 0 is the smallest eigenvalue.
引用
收藏
页码:3507 / 3511
页数:5
相关论文
共 50 条