Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe 2 O 4 and CoFe 2 O 4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption

被引:90
作者
Asadi, Reza [1 ,2 ]
Abdollahi, Hadi [1 ]
Gharabaghi, Mahdi [1 ]
Boroumand, Zohreh [1 ,2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Min Engn, Tehran 1439957131, Iran
[2] Appl Geol Res Ctr Iran, Nanobio Earth Lab, Karaj 3174674841, Iran
关键词
HEAVY-METAL IONS; WASTE-WATER; EQUILIBRIUM ISOTHERM; SELECTIVE REMOVAL; MODIFIED CHITOSAN; OXIDE; ADSORBENTS; CATIONS; ZN(II); COPPER;
D O I
10.1016/j.apt.2020.01.028
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, the MnFe2O4 and CoFe2O4 spinel ferrites nanoparticles were synthesized via a practical co-precipitation route to investigate the zinc removal from aqueous solution. The synthesized magnetic adsorbents were characterized by XRD, VSM, FE-SEM, BET, EDS, and DLS analyses. The synthesized adsorbents had a diameter range of 20–80 nm. The specific surface areas of adsorbents were found to be 84.5 and 50.4 m2/g for MnFe2O4 and CoFe2O4, and the saturation magnetization were 61.39 and 37.54 emu/g, respectively. The effects of initial pH, contact time, metal ion concentration, and temperature on Zn (II) adsorption were precisely investigated. These nanoparticles could remove Zn (II) by following the Langmuir isotherm model at optimum pH = 6, with the high adsorption capacities of 454.5 and 384.6 mg/g for MnFe2O4 and CoFe2O4, respectively. The results of kinetics studies were well fitted by pseudo-second-order, with the determination coefficients of 0.999 for both adsorbents. The thermodynamics studies showed that the zinc (II) adsorption was an exothermic and spontaneous process. Furthermore, the reusability and the desorption capability of adsorbents were also investigated. © 2020 The Society of Powder Technology Japan
引用
收藏
页码:1480 / 1489
页数:10
相关论文
共 50 条
[21]   Valine-Coated Magnetic Nanoparticles: Synthesis, Characterization, and Application in Removal of Cd(II) Ions from Aqueous Solution [J].
Singh, Dharmveer ;
Chandra, Harish ;
Krishna, Vijay .
SEPARATION SCIENCE AND TECHNOLOGY, 2015, 50 (03) :437-445
[22]   Removal of Pb(II) and Cd(II) by MnFe2O4@SiO2@VTMS Nanocomposite Hydrogel from Aqueous Solutions [J].
Ghobadifar, Vahid ;
Marandi, Gholam Bagheri ;
Kurdtabar, Mehran ;
Bardajee, Ghasem Rezanejade .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2023, 31 (06) :2686-2704
[23]   Magnetic polyresorcinol@CoFe2O4@MnS nanoparticles for adsorption of Pb(II), Ag(I), Cr(VI) and bacteria from water solution [J].
Kaveh, Reyhaneh ;
Alijani, Hassan ;
Beyki, Mostafa Hossein .
POLYMER BULLETIN, 2020, 77 (04) :1893-1911
[24]   Synthesis of CoFe2O4/Graphene Oxide-Grafted Tetraethylenepentamine for Removal of Cr (VI) from Aqueous Solution [J].
Pan, Hui ;
Zhao, Donglin ;
Wang, Li .
ADVANCES IN CONDENSED MATTER PHYSICS, 2022, 2022
[25]   Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles [J].
Ozmen, Mustafa ;
Can, Keziban ;
Arslan, Gulsin ;
Tor, Ali ;
Cengeloglu, Yunus ;
Ersoz, Mustafa .
DESALINATION, 2010, 254 (1-3) :162-169
[26]   Composites of CoFe2O4/Graphene oxide/Kaolinite for adsorption of lead ion from aqueous solution [J].
Reta, Yared Daniel ;
Desissa, Temesgen Debelo .
FRONTIERS IN MATERIALS, 2023, 10
[27]   Highly operative removal of amoxicillin (AMX) from aqueous solution by MnFe2O4 nanoparticles and carboxy methyl cellulose (CMC) composite [J].
Riaz, Tauheeda ;
Tahira, Fatima ;
Mansoor, Sana ;
Shahid, Sammia ;
Javed, Mohsin ;
Shahzadi, Tayyaba ;
Zidan, Ammar ;
Cardakli, Ismail Seckin ;
Zaib, Maria ;
Bahadur, Ali ;
Iqbal, Shahid ;
Mahmood, Sajid ;
Alzahrani, Eman ;
Farouk, Abd-ElAziem .
POLYHEDRON, 2024, 263
[28]   Efficient Removal of Pb(II) from Aqueous Solution by CoFe2O4/Graphene Oxide Nanocomposite: Kinetic, Isotherm and Thermodynamic [J].
Zhao, Qian ;
Zhao, Haibo ;
Yan, Lu ;
Bi, Mingxi ;
Li, Yiwen ;
Zhou, Yaqin ;
Song, Zhijie ;
Jiang, Tingshun .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (06) :3951-3958
[29]   SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE NiFe2O4@SalenSi AND ITS APPLICATION IN EFFICIENT REMOVAL OF Ni(II) FROM AQUEOUS SOLUTION [J].
Babadi, Narjes ;
Tavakkoli, Haman ;
Afshari, Mozhgan .
BULLETIN OF THE CHEMICAL SOCIETY OF ETHIOPIA, 2018, 32 (01) :77-88
[30]   Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium [J].
Verma, Monu ;
Kumar, Ashwani ;
Singh, Krishna Pal ;
Kumar, Ravi ;
Kumar, Vinod ;
Srivastava, Chandra Mohan ;
Rawat, Varun ;
Rao, Gyandeshwar ;
Kumari, Sujata ;
Sharma, Pratibha ;
Kim, Hyunook .
JOURNAL OF MOLECULAR LIQUIDS, 2020, 315